• Title/Summary/Keyword: Very soft clay

Search Result 111, Processing Time 0.024 seconds

Strengthening of cement blended soft clay with nano-silica particles

  • Thomas, Geethu;Rangaswamy, Kodi
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.505-516
    • /
    • 2020
  • In recent years, Nano-technology significantly invaded the field of Geotechnical engineering, particularly in soil stabilisation techniques. Stabilisation of weak soil is envisioned to modify various soil characteristics by the addition of natural or synthetic materials into the virgin soil. In the present study, laboratory experiments were executed to investigate the influence of nano-silica particles in the consistency limits, compressive strength of the soft clay blended with cement. The results revealed that the high compressibility behaviour of soft clay modified to medium-stiff condition with fewer dosages of cement and nano-silica. The mechanism behind the strength development is verified with the previous researches as well as from Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction test (XRD) and Scanning Electron Microscopy (SEM) analysis. Based on the results, the presence of nano-silica in soft clay blended with cement has a positive effect on the behaviour of soil. This technique proves to be very economical and less detrimental to the environment.

A Numerical Study on One-Dimensional Consolidation of Soft Clay with Finite Strain Consolidation Theory (유한변형율(有限變形率) 압밀이론(壓密理論)에 의한 연약(軟弱) 점토(粘土)의 -차원(次元) 압밀(壓密)에 관한 수치(數値) 해석적(解析的) 연구)

  • Yoo, Nam-Jae;Jung, Yoon-Hwa;Lee, Myung-Woog
    • Journal of Industrial Technology
    • /
    • v.11
    • /
    • pp.85-98
    • /
    • 1991
  • A numerical study was performed to investigate characteristics of one-dimensional consolidation of soft clay. Results of consolidation tests with the remolded normally consolidation clay of having a very high initial void ratio were analyzed by using the numerical technique of finite difference method based on the finite strain consolidation theory, to evaluate consolidational characteristics of soft clay under surcharges on the top of clay. On the other hand, a numerical parametric study on soft clay consolidated due to its self-weight was also carried out to find its effect on one-dimensional consolidation. Terzaghi's conventional consolidation theory, finite strain consolidation theories with linear and non-linear interpolation of effective stress - void ratio - permeability relation were used to analyze the test results and their results were compared to each other to figure out the difference between them. Therefore, the validity of theories was assessed.

  • PDF

The Reality and Problem of Soft Ground Improvement Construction (연약지반 개량 시공의 실제와 문제점)

  • Choi, Gwi-Bong;Hwang, Soung-Won;Kim, Jong-Ryeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.672-679
    • /
    • 2008
  • During recent years, the large soft ground improvements very rapidly increase with industrial development and it is the types and scales of structure that is enlarged by degree. Then, we must enter construct equipment to improve soft ground and we fulfilled works by carrying out soft clay soil to gain trafficability for them. For improving the soft ground, we lay geotextile on soft clay ground and fill the filter sand that can drain the pore water. Then, we landfill cover soil for come by trafficability of construction tools. Ater that we penetrate vertical drain for dehydration through soft ground. there are very complicated works. For these reason we suggest the methods of soft ground improvement constructions.

  • PDF

An optimum design of on-bottom stability of offshore pipelines on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Do, Chang Ho;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.598-613
    • /
    • 2013
  • This paper deals with the dynamic effect of pipeline installation and embedment for the on-bottom stability design of offshore pipelines on soft clay. On-bottom stability analysis of offshore pipelines on soft clay by DNV-RP-F109 (DNV, 2010) results in very unreasonable pipe embedment and concrete coating thickness. Thus, a new procedure of the on-bottom stability analysis was established considering dynamic effects of pipeline installation and pipe-soil interaction at touchdown point (TDP). This analysis procedure is composed of three steps: global pipeline installation analysis, local analysis at TDP, modified on-bottom stability analysis using DNV-RP-F109. Data obtained from the dynamic pipeline installation analysis were utilized for the finite element analysis (FEA) of the pipeline embedment using the non-linear soil property. From the analysis results of the proposed procedure, an optimum design of on-bottom stability of offshore pipeline on soft clay can be achieved. This procedure and result will be useful to assess the on-bottom stability analysis of offshore pipelines on soft clay. The analysis results were justified by an offshore field inspection.

Comparisons of methods determining preconsolidation pressure for western marine clay of korea (서해점토에 대한 선행압밀하중 선정기법 비교)

  • Im, Eun-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.960-963
    • /
    • 2010
  • In recent days, the development project for industry or housing complex at west coast of Korea is on an increasing trend. the design of soft ground is necessarily required. So, the evaluation of consolidation characteristics for soft ground is very important in design and construction. Especially, the correct evaluation of preconsolidation pressure or OCR for given soft ground is essential at the west coast that has a large tidal range, since it affects the settlement of soft ground. In this study, various methods determining preconsolidation pressure were carried out to investigate the application of each method. The preconsolidation pressure that evaluated from the results of conventional consolidation tests on the songsan clay were compared.

  • PDF

A Study on Deformation of Soft Clay Foundation by Embankment Construction (제방축조에 의한 연약점토지반의 변형해석에 관한 연구)

  • 정형식;황영철
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.55-64
    • /
    • 1993
  • When earth structures such as dykes or embankments are constructed on very soft clay foundation, unexpectedly large deformations of earth structures as well as clay foundation are encountered during and after construction. The final constructed section is composed of a portion of embankment above the existing ground level and that which penetrated into the soft foundation soil. This study is aimed to correctly estimate the shape of earth structures which penetrate some depth into the soft clay foundation. In this study the methods to predict penetration depth and deformation shape of embankment section after dumping of construction material. Model tests were carried out to prove the developed theory and FEM analysis. And when the mat is added, reinforcement effect was markedly noticed.

  • PDF

A Experimental study for obtaining material function of very soft clay (초연약 점토의 구성관계 산정에 관한 실험적 연구)

  • Lee, Song;Kang, Myung-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.491-498
    • /
    • 2002
  • Dredged and reclaimed soft clays form slurry state which is very high water content and very low shear strength, experience large self-weight consolidation, nonlinear compressibility and permeability phenomenon would take place. In this case, a material functions which represent variety effective stress-void ratio-permeability relation (especially very low effective stress), are should be determined to predict nonlinear finite strain consolidation phenomenon forehand In this study, large slurry consolidometer with a 380mm diameter and a 1400mm height which is able to consolidation and permeability test, was developed to determine material function of very soft clay with a 500% initial water content clay, self-weight consolidation and low stress level consolidation (1Kpa, 3Kpa, 6Kpa, 12Kpa) was conducted and after each consolidation step permeability test also conducted. after final consolidation step, a constant rate of strain consolidation was conducted with undisturbed sample obtained from the large consolidometer. On the above result, material function was determined and laboratory test was modelled to evaluate its validity, numerical analysis on th field was compared to other method.

  • PDF

Improvement of Soft Marine Clay by Preloading and Wick Drain Method (선행하중과 Wick Drain공법에 의한 연약해성광토의 개량)

  • 유태성;박광준
    • Geotechnical Engineering
    • /
    • v.3 no.1
    • /
    • pp.7-24
    • /
    • 1987
  • Preloading surcharge method along with vertical drains was adopted to improve the performance of a very soft marine clay deposit. The onshore deposit, located in the Ulsan Bay area, consists of a 2 to 10m thick, very soft, highly compressible marine clay layer developed just below. the sea water level. The initial undrained shear strength of the clay layer was about 0.6 ton/m2. But, the deposit was designed after treatment to support some auxiliary facilities for a new ilo refinery plant, requiring bearing capacities of 3.6 to 5.4 ton/m2 and maximum allowablee settlement of less than 7.5cm. A total of 35, 000 wick drains Ivas installed to expedite drainage during preloading, and surcharge loads of up to 5m above the original ground level were applied in a step-by-step loading sequence to prevent ground failure by excess surcharge loads. An extensive program of field instrumentation was implemented to monitor the behavior of the clay deposit. Measurers!ends included settlements, excess pore pressure and its dissipation, ground farmer level fluctuation, and lateral movement of the so(t clay layer under the preloads. This paper describes the design concepts, construction methods and control procedures used for improvement of the clay layer. It also presents the ground behavior measured during construction, rind comparisons with theoretical predictions.

  • PDF

Advanced procedure for estimation of pipeline embedment on soft clay seabed

  • Yu, S.Y.;Choi, H.S.;Park, K.S.;Kim, Y.T.;Kim, D.K.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.381-389
    • /
    • 2017
  • In the present study, the advanced procedure has been proposed to estimate higher accuracy of embedment of pipes that are installed on soft clay seabed. Numerical simulation by OrcaFlex simulation code was performed to investigate dynamic seabed embedment, and two steps, i.e., static and dynamic analysis, were adopted. In total, four empirical curves were developed to estimate the seabed embedment including dynamic phenomena, i.e., behaviour of vessel, environmental condition, and behaviour of nonlinear soil. The obtained results were compared with existing methods (named general method) such as design code or guideline to examine the difference of seabed embedment for existing and advance methods. Once this process was carried out for each case, a diagram for estimating seabed embedment was established. The applicability of the proposed method was verified through applied examples with field survey data. This method will be very useful in predicting seabed embedment on soft clay, and the structural behaviours of installed subsea pipelines can be changed by the obtained seabed embedment in association with on-bottom stability, free span, and many others.

Monitoring management for safely construction of deep shield tunnel (대심도 해저 쉴드터널 안전시공을 위한 계측관리)

  • 유길환;김영수;황대영;곽정민;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.319-326
    • /
    • 2002
  • During the construction period of submarine shield tunnel, which is built firstly in very soft marine clay layer 40m deep in Korea, wide range problems were encountered such as safe launching against high earth pressure at shield entrance, technique of shield face pressure control when passing through complex multi-layered soils This paper introduces successful construction practice through development of state-of-the-art construction method and field monitoring.

  • PDF