Acknowledgement
Supported by : Dicle University
References
- E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259. https://doi.org/10.1007/s00205-002-0208-7
- G. A. Afrouzi, S. Mahdavi, and Z. Naghizadeh, The Nehari manifold for p-Laplacian equation with Dirichlet boundary condition, Nonlinear Anal. Model. Control 12 (2007), no. 2, 143-155.
- A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543. https://doi.org/10.1006/jfan.1994.1078
- K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations 193 (2003), no. 2, 481-499. https://doi.org/10.1016/S0022-0396(03)00121-9
- O. M. Buhrii and R. A. Mashiyev, Uniqueness of solutions of the parabolic variation inequality with variable exponent of nonlinearity, Nonlinear Anal. 10 (2009), 2325-2331.
- J. Chabrowski and Y. Fu, Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 306 (2005), no. 2, 604-618. https://doi.org/10.1016/j.jmaa.2004.10.028
- L. Diening, Theoretical and Numerical Results for Electrorheological Fluids, Ph. D. thesis, University of Frieburg, Germany, 2002.
- D. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3, 267-293. https://doi.org/10.4064/sm-143-3-267-293
- A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004), no. 1, 30-42. https://doi.org/10.1016/j.jmaa.2004.05.041
- X. L. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 312 (2005), no. 2, 464-477. https://doi.org/10.1016/j.jmaa.2005.03.057
-
X. L. Fan, J. S. Shen, and D. Zhao, Sobolev embedding theorems for spaces
$W^{k,p(x)}({\Omega})$ , J. Math. Anal. Appl. 262 (2001), no. 2, 749-760. https://doi.org/10.1006/jmaa.2001.7618 -
X. L. Fan and D. Zhao, On the spaces
$L^{p(x)}({\Omega})$ and$W^{m,p(x)}({\Omega})$ , J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. https://doi.org/10.1006/jmaa.2000.7617 - X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), no. 8, 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
- X. L. Fan, Q. Zhang, and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), no. 2, 306-317. https://doi.org/10.1016/j.jmaa.2003.11.020
- T. C. Halsey, Electrorheological fluids, Science 258 (1992), 761-766. https://doi.org/10.1126/science.258.5083.761
- P. Harjulehto, P. Hasto, M. Koskenoja, and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal. 25 (2006), no. 3, 205-222. https://doi.org/10.1007/s11118-006-9023-3
- P. Hasto, The p(x)-Laplacian and applications, J. Anal. 15 (2007), 53-62.
-
O. Kovacik and J. Rakosnik, On spaces
$L^{p(x)}$ and$W^{k,p(x)}$ , Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618. - R. A. Mashiyev, Some properties of variable Sobolev capacity, Taiwanese J. Math. 12 (2008), no. 3, 671-678. https://doi.org/10.11650/twjm/1500602428
- M. Mihailescu, Existence and multiplicity of solutions for an elliptic equation with p(x)-growth conditions, Glasg. Math. J. 48 (2006), no. 3, 411-418. https://doi.org/10.1017/S0017089506003144
- M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2073, 2625-2641. https://doi.org/10.1098/rspa.2005.1633
- M. Mihailescu and V. Radulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929-2937. https://doi.org/10.1090/S0002-9939-07-08815-6
-
S. Ogras, R. A. Mashiyev, M. Avci, and Z. Yucedag, Existence of solutions for a class of elliptic systems in
$R^N$ involving the (p(x), q(x))-Laplacian, J. Inequal. Appl. 2008 (2008), Art. Id 612938, 16 pp. - M. Ruzicka, Electrorheological Fluids: modeling and mathematical theory, Springer Lecture Notes in Math. Vol. 1748, Springer Verlag, Berlin, Heidelberg, New York, 2000.
- N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747. https://doi.org/10.1002/cpa.3160200406
- T. F. Wu, Multiplicity of positive solution of p-Laplacian problems with sign-changing weight functions, Int. J. Math. Anal. (Ruse) 1 (2007), no. 9-12, 557-563.
- X. Zhang and X. Liu, The local boundedness and Harnack inequality of p(x)-Laplace equation, J. Math. Anal. Appl. 332 (2007), no. 1, 209-218. https://doi.org/10.1016/j.jmaa.2006.10.021
- V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, (russian) Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710, 877.
Cited by
- Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition vol.57, pp.5, 2012, https://doi.org/10.1080/17476933.2011.598928
- On a PDE Involving the Variable Exponent Operator with Nonlinear Boundary Conditions vol.12, pp.3, 2015, https://doi.org/10.1007/s00009-014-0424-z
- Correction to: On a PDE Involving the Variable Exponent Operator with Nonlinear Boundary Conditions vol.15, pp.1, 2018, https://doi.org/10.1007/s00009-017-1049-9