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THE NEHARI MANIFOLD APPROACH FOR DIRICHLET
PROBLEM INVOLVING THE p(x)-LAPLACIAN EQUATION

Rabil A. Mashiyev, Sezai Ogras, Zehra Yucedag, and Mustafa Avci

Abstract. In this paper, using the Nehari manifold approach and some
variational techniques, we discuss the multiplicity of positive solutions
for the p(x)-Laplacian problems with non-negative weight functions and
prove that an elliptic equation has at least two positive solutions.

1. Introduction

In this paper, we study the multiplicity of positive solutions for the following
elliptic equation

(Eλ)
{−∆p(x)u(x) = λa(x) |u|q(x)−2

u + b(x) |u|h(x)−2
u in Ω

u(x) = 0 on ∂Ω,

where the following conditions are satisfied:
Ω is a bounded domain with smooth boundary in RN , N ≥ 2, q, p, h ∈ C(Ω)

such that 1 < q(x) < p(x) < h(x) < p∗(x) (p∗(x) = Np(x)
N−p(x) if N > p(x),

p∗(x) = ∞ if N ≤ p(x)), 1 < p− :=ess inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := ess sup
x∈Ω

p(x) <

∞, 1 < q− ≤ q+ < p− ≤ p+ < h− ≤ h+, λ > 0 ∈ R and a, b ∈ C
(
Ω

)
are

non-negative weight functions with compact support in Ω.
Over the last decade, the variable exponent Lebesgue spaces Lp(x) and the

corresponding Sobolev space W 1,p(x) have been a subject of active research area
(we refer to [8, 11, 12, 18, 19] for the fundamental properties of these spaces).
These investigations are stimulated mainly by the development of the studies
of problems in Elasticity, Electrorheological fluids, Image Processing, Flow in
Porous Media, Calculus of Variations, Differential Equations with p(x)-growth
(see Acerbi and Mingione [1], Diening [7], Buhrii and Mashiyev [5], Halsey
[15], Mihăilescu and Rădulescu [21], Růžička [24], Zhikov [28]). Among these
problems, the study of p (x)-Laplacian problems via variational methods is an
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interesting topic. A lot of researchers have devoted their works to this area
(see Chabrowski and Fu [6], Fan [10], Fan and Zhang [13, 14], Mihăilescu [21],
Mihăilescu and Rădulescu [22], Harjulehto, Hästö, Koskenoja and S. Varonen
[16], Hästö [17], Ogras, Mashiyev, Avci and Yucedag [23]). We refer to the
p (x)-Laplace operator ∆p(x)u := div

(
|∇u|p(x)−2∇u

)
, where p is a continuous

non-constant function. This differential operator is a natural generalization of
the p-Laplace operator ∆pu := div

(
|∇u|p−2∇u

)
, where p > 1 is a real con-

stant. However, the p (x)-Laplace operator possesses more complicated nonlin-
earity than p-Laplace operator, due to the fact that ∆p(x) is not homogeneous.
This fact implies some difficulties; for example, we can not use the Lagrange
Multiplier Theorem in many problems involving this operator.

In recent years, the similar problems of the form (Eλ) have been studied
by many authors using various methods. In [20] for the case p (x) > 1 and
1 < q < infΩ p < supΩ p < h < min

{
N, N.p−

N−p−

}
and a (x) ≡ a, b (x) ≡

b > 0, using Ekeland’s variational principle and the mountain-pass lemma
Mihăilescu proved that, if a and b small enough then there are two distinct
solutions for the problem; in [22] under the assumptions 1 < minx∈Ω q (x) <

minx∈Ω p (x) < maxx∈Ω q (x), where p (x) , q (x) are continuous on Ω, h (x) = 0,
a (x) ≡ 1, b (x) = 0, Mihăilescu and Rădulescu showed that there exists λ∗

such that any λ ∈ (0, λ∗) is an eigenvalue for the problem by using Eke-
land’s variational principle and the mountain-pass lemma; in [14] for the case
p (x) = q (x) > 1, h (x) = 0, where p (x) is continuous on Ω, and a (x) ≡
1, b (x) = 0, Fan, Zhang, and Zhao obtained that, Λ = Λp(x), the set of eigen-
values, is a nonempty infinite set such that sup Λ = +∞. In addition, they
present some sufficient conditions for inf Λ = 0 and for inf Λ > 0, respec-
tively; in [4] under the conditions p (x) = 2, q (x) = 2 and 1 < h < N+2

N−2 ,
where h is constant, and a (x) , b (x) : Ω ⊂ RN → R are smooth functions
which may change sign in Ω, Brown and Zhang used the relationship be-
tween the Nehari manifold and fibrering maps to show how existence and non-
existence results for positive solutions of the equation are linked to properties
of the Nehari manifold; in [2] Afrouzi, Mahdavi, and Naghizadeh dealt with
the similar problem for the case p (x) = q (x) = p, h (x) = h, 1 < h < p,
a (x) = 1 and b (x) : Ω ⊂ RN → R is a smooth function which may change
sign and they discussed the existence and multiplicity of non-negative so-
lutions of the problem from a variational viewpoint by making use of the
Nehari manifold. Under the conditions p (x) = p, q (x) = q, h (x) = h,

1 < q < p < h < p∗
(
p∗ = Np

N−p if N > p, p∗ = ∞ if N ≤ p
)

and the weight
functions a (x) ≡ b (x) ≡ 1, the authors Ambrosetti-Brezis-Cerami [3] have in-
vestigated equation (Eλ). They found that there exists λ0 such that equation
(Eλ) admits at least two positive solutions for λ ∈ (0, λ0) , has a positive solu-
tion for λ = λ0 and no positive solution exists for λ > λ0, and also in [26] under
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the same assumptions and with sign-changing weight functions a (x) and b (x),
Wu gave a variational proof of the existence of at least two positive solutions
of equation (Eλ) for p ∈ (1, p∗), using Palais-Smale and decomposition of the
Nehari manifold.

In this paper, we have generalized the articles of Ambrosetti-Brezis-Cerami
[3] and Wu [26] , to the p (x)-Laplacian by using the Nehari manifold under the
similar conditions. We shall discuss the multiplicity of positive solutions for
the problem (Eλ) and prove the existence of at least two positive solutions.

If we consider all above mentioned papers use of the Nehari manifold ap-
proach for the case p (x)-growth condition makes our study quite different and
very interesting.

2. Notations and preliminaries

We will discuss our problem (Eλ) in the variable exponent Sobolev space
W

1,p(x)
0 (Ω), so we need some theories and basic properties on spaces Lp(x) (Ω)

and W 1,p(x) (Ω) .
Write

L∞+ (Ω) =
{
p ∈ L∞ (Ω) : p− > 1

}
.

Let’s define by U (Ω) the set of all measurable real functions defined on Ω.
For any p ∈ L∞+ (Ω), we denote the variable exponent Lebesgue space by

Lp(x) (Ω) =



u ∈ U (Ω) :

∫

Ω

|u (x)| p(x)
dx < ∞



 ,

which is equipped with the norm, so-called Luxemburg norm [11, 12, 18]

|u|p(x) = inf



δ > 0 :

∫

Ω

∣∣∣∣
u (x)

δ

∣∣∣∣
p(x)

dx ≤ 1





and
(
Lp(x) (Ω) , | · |p(x)

)
becomes a Banach space, we call it as variable expo-

nent Lebesgue space.
Let c is a measurable real-valued function and c(x) > 0 for x ∈ Ω. Then the

weighted variable exponent Lebesgue space L
p(x)
c(x) (Ω) is defined by

L
p(x)
c(x) (Ω) =



u ∈ U (Ω) :

∫

Ω

c(x) |u (x)|p(x)
dx < ∞; c(x) > 0





which is equipped with the norm

|u|(p(x),c(x)) = inf



δ > 0 :

∫

Ω

c(x)
∣∣∣∣
u (x)

δ

∣∣∣∣
p(x)

dx ≤ 1



 .
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Proposition 2.1 ([11, 18]). The conjugate space of Lp(x) (Ω) is Lp′(x) (Ω) ,

where 1
p′(x) + 1

p(x) = 1. For any u ∈ Lp(x) (Ω) and v ∈ Lp′(x) (Ω), we have
∣∣∣∣∣∣

∫

Ω

uvdx

∣∣∣∣∣∣
≤

(
1

p−
+

1
(p′)−

)
|u|p(x) |v|p′(x) ≤ 2 |u|p(x) |v|p′(x) .

Proposition 2.2 ([11, 18]). Denote ρ (u) =
∫
Ω
|u (x)|p(x)

dx, ∀u ∈ Lp(x)Ω,
then we have

i) |u|p(x) < 1 (= 1; > 1) ⇔ ρ (u) < 1 (= 1; > 1) ,

ii) |u|p(x) > 1 =⇒ |u|p−p(x) ≤ ρ (u) ≤ |u|p+

p(x) ,

iii) |u|p(x) < 1 =⇒ |u|p+

p(x) ≤ ρ (u) ≤ |u|p−p(x) .

Proposition 2.3 ([11, 18]). If u, un ∈ Lp(x) (Ω) , n = 1, 2, . . . , then the follow-
ing statements are equivalent to each other:

(1) lim
n→∞

|un − u|p(x) = 0;

(2) lim
n→∞

ρ(un − u) = 0;

(3) un → u in measure in Ω and lim
n→∞

ρ(un) = ρ(u).

Define the variable exponent Sobolev space W 1,p(x) (Ω) by

W 1,p(x) (Ω) = {u ∈ Lp(x) (Ω) ; |∇u| ∈ Lp(x) (Ω)}
and it can be equipped with the norm

‖u‖ = |u|p(x) + |∇u|p(x) , ∀u ∈ W 1,p(x) (Ω) .

The space W
1,p(x)
0 (Ω) is denoted by the closure of C∞0 (Ω) in W 1,p(x) (Ω). We

will use ‖u‖ = |∇u|p(x) for u ∈ W
1,p(x)
0 (Ω) in the following discussions.

Proposition 2.4 ([11, 18]). If p− > 1 and p+ < ∞, then the spaces Lp(x)(Ω),
L

p(x)
c(x)(Ω), W 1,p(x)(Ω) and W

1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

Given two Banach spaces X and Y the symbol X ↪→ Y means that X is
continuously embedded in Y and also the symbol X ↪→↪→ Y means that there
is a compact embedding of X in Y .

Proposition 2.5 ([11, 18]). (i) Assume that the boundary of Ω possesses the
cone property and p ∈ C(Ω). If q ∈ C(Ω) and 1 ≤ q (x) < p∗ (x) for any x ∈ Ω,
then W 1,p(x) (Ω) ↪→↪→ Lq(x) (Ω).

(ii) If p, q ∈ C(Ω) and p (x) ≤ q (x) ≤ p∗ (x) for any x ∈ Ω, then W 1,p(x) (Ω)
↪→ Lq(x) (Ω) and also there is a constant c > 0 such that

|u|q(x) ≤ c ‖u‖ ∀ u ∈ W
1,p(x)
0 (Ω) .
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Proposition 2.6 ([8]). Let p(x) and q(x) be measurable functions such that
p(x) ∈ L∞(Ω) and 1 ≤ p(x)q(x) ≤ ∞ for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u 6= 0.
Then

|u|p(x)q(x) ≤ 1 =⇒ |u|p+

p(x)q(x) ≤
∣∣∣|u|p(x)

∣∣∣
q(x)

≤ |u|p−p(x)q(x)

|u|p(x)q(x) ≥ 1 =⇒ |u|p−p(x)q(x) ≤
∣∣∣|u|p(x)

∣∣∣
q(x)

≤ |u|p+

p(x)q(x) .

In particular, if p(x) = p is constant, then

||u|p|q(x) = |u|ppq(x) .

Theorem 2.7. Assume that the boundary of Ω possesses the cone property
and p ∈ C

(
Ω

)
. Suppose that b ∈ Lβ(x) (Ω), b (x) > 0 for x ∈ Ω, β ∈ C

(
Ω

)
and

β− > 1, β−0 ≤ β0 (x) ≤ β+
0

(
1

β(x) + 1
β0(x) = 1

)
. If h ∈ C

(
Ω

)
and

(2.1) 1 < h (x) <
β(x)− 1

β(x)
p∗ (x) , ∀x ∈ Ω

or

1 < β(x) <
Np(x)

Np(x)− h(x) (N − p(x))
,

then the embedding from W 1,p(x)(Ω) to L
h(x)
b(x) (Ω) is compact. Moreover, there

is a constant c5 > 0 such that the inequality

(2.2)
∫

Ω

b (x) |u|h(x)
dx ≤ c5

(
‖u‖h− + ‖u‖h+

)

holds.

Proof. We must remark that our proof of the embedding W 1,p(x)(Ω) ↪→↪→
L

h(x)
b(x) (Ω) is similar to Fan [10] . Let u ∈ W 1,p(x)(Ω) and set r (x) = β(x)

β(x)−1h (x)
= β0 (x) h (x). Then (2.1) implies r (x) < p∗ (x). Hence, by Proposition 2.5
we have the embedding W 1,p(x)(Ω) ↪→↪→ Lr(x) (Ω). So, for u ∈ W 1,p(x)(Ω), we
have |u|h(x) ∈ Lβ0(x) (Ω). By Proposition 2.1,∫

Ω

b (x) |u|h(x)
dx ≤ c1 |b|β(x)

∣∣∣|u|h(x)
∣∣∣
β0(x)

< ∞.

This implies that W 1,p(x)(Ω) ⊂ L
h(x)
b(x) (Ω). Now let {un} ⊂ W 1,p(x)(Ω) and

un ⇀ 0 (weakly) in W 1,p(x)(Ω).

Then, we have
un → 0 (strongly) in Lr(x) (Ω) .

So, it follows that
∣∣∣|un|h(x)

∣∣∣
β0(x)

→ 0. Thus, we have
∫

Ω

b (x) |un|h(x)
dx ≤ c1 |b|β(x)

∣∣∣|un|h(x)
∣∣∣
β0(x)

→ 0,
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which implies |un|(h(x),b(x))→0. Hence, we have the embedding W 1,p(x)(Ω) ↪→↪→
L

h(x)
b(x) (Ω).
Now let’s show the inequality (2.2) holds. By the above inequity we know

that ∫

Ω

b (x) |u|h(x)
dx ≤ c1 |b|β(x)

∣∣∣|u|h(x)
∣∣∣
β0(x)

< ∞.

Since h− ≤ h (x) ≤ h+and |u|h(x) ≤ |u|h− + |u|h+

it follows that∫

Ω

b (x) |u|h(x)
dx ≤

∫

Ω

b (x) |u|h− dx +
∫

Ω

b (x) |u|h+

dx.

Moreover, by Propositions 2.1, 2.2, 2.5, 2.6 and the condition p(x) < h−β0(x) ≤
h+β0(x) < p∗(x), we have
(2.3)∫

Ω

b (x) |u|h− dx ≤ c2 |b|β(x)

∣∣∣|u|h
−∣∣∣

β0(x)
= c2 |b|β(x) |u|h

−

h−β0(x) ≤ c3 ‖u‖h−
.

Similarly, we can obtain

(2.4)
∫

Ω

b (x) |u|h+

dx ≤ c4 ‖u‖h+

.

As a result, from (2.3) and (2.4) it follows that∫

Ω

b (x) |u|h(x)
dx ≤ c5

(
‖u‖h− + ‖u‖h+

)
.

The proof is complete. ¤
Theorem 2.8. Assume that the boundary of Ω possesses the cone property
and p ∈ C

(
Ω

)
. Suppose that a ∈ Lα(x) (Ω), a (x) > 0 for x ∈ Ω, α ∈ C

(
Ω

)

and α− > 1, α−0 ≤ α0 (x) ≤ α+
0

(
1

α(x) + 1
α0(x) = 1

)
. If q ∈ C

(
Ω

)
, p (x) <

α(x)
α(x)−1q (x) and

(2.5) 1 < q (x) <
α(x)− 1

α(x)
p∗ (x) , ∀x ∈ Ω

or
Np(x)

Np(x)− q(x) (N − p(x))
< α(x) <

p(x)
p(x)− q(x)

with,

then the embedding from W 1,p(x)(Ω) to L
q(x)
a(x) (Ω) is compact. Moreover, there

is a constant c7 > 0 such that the inequality

(2.6)
∫

Ω

a (x) |u|q(x)
dx ≤ c7

(
‖u‖q− + ‖u‖q+

)

holds.
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Proof. Let u ∈ W 1,p(x)(Ω). Set m (x) = α(x)
α(x)−1q (x) = α0 (x) q (x). Then (2.5)

implies m (x) < p∗ (x). Hence, by Proposition 2.5 there is the embedding
W 1,p(x)(Ω) ↪→↪→ Lm(x) (Ω). For u ∈ W 1,p(x)(Ω) we have |u|q(x) ∈ Lα0(x) (Ω).
By Proposition 2.1,∫

Ω

a (x) |u|q(x)
dx ≤ c6 |a|α(x)

∣∣∣|u|q(x)
∣∣∣
α0(x)

< ∞.

This implies that W 1,p(x)(Ω) ⊂ L
q(x)
a(x) (Ω). Now let {un} ⊂ W 1,p(x)(Ω) and

un ⇀ 0 in W 1,p(x)(Ω).

Then, we have
un → 0 in Lm(x) (Ω) .

So, it follows that
∣∣∣|un|q(x)

∣∣∣
α0(x)

→ 0. Thus, we have
∫

Ω

a (x) |u|q(x)
dx ≤ c6 |a|α(x)

∣∣∣|u|q(x)
∣∣∣
α0(x)

→ 0,

which implies |un|(q(x),a(x))→0. Hence, we have the embedding W 1,p(x)(Ω) ↪→↪→
L

q(x)
a(x)(Ω).
Now, let’s show that the inequality (2.6) holds. By the above inequality we

know that ∫

Ω

a (x) |u|q(x)
dx ≤ c6 |a|α(x)

∣∣∣|u|q(x)
∣∣∣
α0(x)

< ∞.

Considering the condition p(x) < q−α0(x) ≤ q+α0(x) < p∗(x) and applying
the similar steps as we did in proof of Theorem 2.7, we have∫

Ω

a (x) |u|q(x)
dx ≤ c7

(
‖u‖q− + ‖u‖q+

)
.

The proof is complete. ¤

Proposition 2.9. Assume that the conditions of Theorem 2.7 and Theorem 2.8
hold, respectively. Let u ∈ W 1,p(x)(Ω), then there are positive constants c8, c9,
c10, c11 > 0 such that the following inequalities hold

i) ∫

Ω

b (x) |u|h(x)
dx ≤

{
c8 ‖u‖h+

if ‖u‖ > 1
c9 ‖u‖h− if ‖u‖ < 1

ii) ∫

Ω

a (x) |u|q(x)
dx ≤

{
c10 ‖u‖q+

if ‖u‖ > 1
c11 ‖u‖q− if ‖u‖ < 1.
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Proof. It follows immediately from the conclusions of Theorem 2.7 and Theo-
rem 2.8, respectively. ¤

3. The main results

Let J ∈ C1 (X,R) be the Euler functional associated with an elliptic problem
on Banach space X. If J is bounded below and has a minimizer on X, then this
minimizer is a critical point of J . Hence, it is a solution of the corresponding
elliptic problem. However, in many problems J is not bounded below on the
whole space X, but is bounded below on an appropriate subset of X, and
minimizer on this set (if it exists) may give rise to solutions of the corresponding
elliptic problem. A good candidate for an appropriate subset of X is the Nehari
manifold.

If we consider our problem (Eλ), then, the corresponding Euler functional
is defined by

Jλ(u) =
∫

Ω

1
p(x)

|∇u|p(x)
dx−λ

∫

Ω

1
q(x)

a (x) |u|q(x)
dx−

∫

Ω

1
h (x)

b (x) |u|h(x)
dx.

Then, by Theorems 2.7, 2.8, and Proposition 2.2, we have

Jλ(u) ≥ 1
p+

∫

Ω

|∇u|p(x)
dx− λ

q−

∫

Ω

a (x) |u|q(x)
dx− 1

h−

∫

Ω

b (x) |u|h(x)
dx,

≥ 1
p+

‖u‖p− − λ

q−
c7

(
‖u‖q− + ‖u‖q+

)
− 1

h−
c5

(
‖u‖h− + ‖u‖h+

)
.

Since q+ < p− ≤ p+ < h− ≤ h+, this shows Jλ is not bounded below on
whole W

1,p(x)
0 (Ω). However, we shall show it is bounded on the Nehari manifold

Mλ (Ω) which is given by

Mλ (Ω) =
{

u ∈ W
1,p(x)
0 (Ω)\ {0} : 〈J ′λ(u), u〉 = 0

}
,

where 〈., .〉 denotes the usual duality between W
1,p(x)
0 (Ω) and W−1,p′(x)(Ω). It

is clear that all critical points of Jλ must lie on Mλ(Ω) and local minimizers
on Mλ (Ω) are usually critical points of Jλ.

Thus, u ∈ Mλ(Ω) if and only if
(3.1)

Iλ(u) := 〈J ′λ(u), u〉 =
∫

Ω

|∇u|p(x)
dx− λ

∫

Ω

a (x) |u|q(x)
dx−

∫

Ω

b (x) |u|h(x)
dx

= 0.
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Then for u ∈ Mλ(Ω), we have

〈I ′λ(u), u〉 =
∫

Ω

p (x) |∇u|p(x)
dx− λ

∫

Ω

q (x) a (x) |u|q(x)
dx

−
∫

Ω

h (x) b (x) |u|h(x)
dx

≤ (
p+ − q−

)
λ

∫

Ω

a (x) |u|q(x)
dx +

(
p+ − h−

) ∫

Ω

b (x) |u|h(x)
dx.

Now, we split Mλ(Ω) into three parts:

M+
λ = {u ∈ Mλ (Ω) : 〈I ′λ(u), u〉 > 0} ,

M−
λ = {u ∈ Mλ (Ω) : 〈I ′λ(u), u〉 < 0} ,

M0
λ = {u ∈ Mλ (Ω) : 〈I ′λ(u), u〉 = 0} .

Theorem 3.1. Suppose that u0 is a local maximum or minimum for Jλ on
Mλ (Ω) . If u0 /∈ M0

λ(Ω), then u0 is a critical point of Jλ.

Proof. The proof of Theorem 3.1 can be obtained directly from the following
lemmas (particularly Lemma 3.3). ¤

Lemma 3.2. The energy functional Jλ is coercive and bounded below on Mλ(Ω).

Proof. Let u ∈ Mλ(Ω) and ‖u‖ > 1. Then using (3.1), Propositions 2.2 and
2.9, we have

Jλ(u) =
∫

Ω

1
p(x)

|∇u|p(x)
dx− λ

∫

Ω

1
q(x)

a (x) |u|q(x)
dx−

∫

Ω

1
h (x)

b (x) |u|h(x)
dx

≥ 1
p+

∫

Ω

|∇u|p(x)
dx− λ

q−

∫

Ω

a (x) |u|q(x)
dx

− 1
h−




∫

Ω

|∇u|p(x)
dx− λ

∫

Ω

a (x) |u|q(x)
dx




≥
(

1
p+

− 1
h−

) ∫

Ω

|∇u|p(x)
dx + λ

(
1

h−
− 1

q−

) ∫

Ω

a(x) |u|q(x)
dx

≥
(

h− − p+

h−p+

)
‖u‖p− − c10λ

(
h− − q−

h−q−

)
‖u‖q+

.

Since, p− > q+ so, Jλ (u) → ∞ as ‖u‖ → ∞. This implies Jλ is coercive
and bounded below on Mλ (Ω) . ¤

Lemma 3.3. There exists λ1 > 0 such that for 0 < λ < λ1 we have M0
λ (Ω) =

∅.



854 R. A. MASHIYEV, S. OGRAS, Z. YUCEDAG, AND M. AVCI

Proof. Suppose otherwise, that is, M0
λ (Ω) 6= ∅ for all λ ∈ R r {0} . Let u ∈

M0
λ (Ω) such that ‖u‖ > 1. Then using (3.1), (2.4) and definition of M0

λ (Ω),
we have

0 = 〈I/
λ (u) , u〉

=
∫

Ω

p (x) |∇u|p(x)
dx− λ

∫

Ω

q (x) a (x) |u|q(x)
dx−

∫

Ω

h (x) b (x) |u|h(x)
dx

≥ p−
∫

Ω

|∇u|p(x)
dx− q+




∫

Ω

|∇u|p(x)
dx−

∫

Ω

b (x) |u|h(x)
dx




− h+

∫

Ω

b (x) |u|h(x)
dx

≥ (
p− − q+

) ∫

Ω

|∇u|p(x)
dx +

(
q+ − h+

) ∫

Ω

b(x) |u|h(x)
dx.

By Proposition 2.9,

0 ≥ (
p− − q+

) ‖u‖p− + c8

(
q+ − h+

) ‖u‖h+

,

(3.2) ‖u‖ ≥ c12

(
p− − q+

h+ − q+

) 1
h+−p−

.

Similarly,

0 = 〈I ′λ (u) , u〉

≤ p+

∫

Ω

|∇u|p(x)
dx− λq−

∫

Ω

a (x) |u|q(x)
dx− h−

∫

Ω

b (x) |u|h(x)
dx

≤ p+

∫

Ω

|∇u|p(x)
dx− λq−

∫

Ω

a (x) |u|q(x)
dx

− h−




∫

Ω

|∇u|p(x)
dx− λ

∫

Ω

a (x) |u|q(x)
dx


 .

By Proposition 2.9,

0 ≤ (
p+ − h−

) ‖u‖p− + λc10

(
h− − q−

) ‖u‖q+

,

(3.3) ‖u‖ ≤ c13

(
λ

h− − q−

h− − p+

) 1
p−−q+

.
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If λ is sufficiently small (e.g. λ =
(

h−−p+

h−−q−

) (
p−−q+

h+−q+

) p−−q+

h+−p− ), then from (3.2)
and (3.3) we get ‖u‖ < 1 which contradicts with our assumption. Hence, we
conclude M0

λ (Ω) = ∅. ¤

By Lemma 3.3, for 0 < λ < λ1, we can write Mλ (Ω) = M+
λ (Ω) ∪M−

λ (Ω).
Therefore, we can let

α+
λ = inf

u∈M+
λ (Ω)

Jλ(u) and α−λ = inf
u∈M−

λ (Ω)
Jλ(u).

Lemma 3.4. If 0 < λ < λ1, then for all u ∈ M+
λ (Ω), Jλ(u) < 0.

Proof. Let u ∈ M+
λ (Ω). By definition of Jλ(u), we can write

(3.4) Jλ(u) ≤ 1
p−

∫

Ω

|∇u|p(x)
dx− λ

q+

∫

Ω

a(x) |u|q(x)
dx− 1

h+

∫

Ω

b (x) |u|h(x)
dx.

Since u ∈ M+
λ (Ω), we have

(3.5) p+

∫

Ω

|∇u|p(x)
dx− λq−

∫

Ω

a(x) |u|q(x)
dx− h−

∫

Ω

b(x) |u|h(x)
dx > 0.

Now, if we multiply (3.1) by (−q−) and add with (3.5), we get

(3.6)
∫

Ω

b(x) |u|h(x)
dx <

p+ − q−

h− − q−

∫

Ω

|∇u|p(x)
dx.

Moreover, using (3.1) together with (3.4)

(3.7) Jλ(u) ≤
(

1
p−

− 1
q+

) ∫

Ω

|∇u|p(x)
dx +

(
1
q+

− 1
h+

) ∫

Ω

b(x) |u|h(x)
dx,

and applying (3.6) in (3.7), it follows

Jλ(u) < − (p− − q+) (h+ − p−)
h+p−q+

‖u‖p−
< 0.

Hence, we have α+
λ = inf

u∈M+
λ (Ω)

Jλ(u) < 0. ¤

Theorem 3.5. If 0 < λ < λ1, there exists a minimizer of Jλ on M+
λ (Ω).

Proof. Since Jλ is bounded below on Mλ (Ω) and so on M+
λ (Ω). Then, there

exits a minimizing sequence {u+
n } ⊆ M+

λ (Ω) such that

lim
n→∞

Jλ(u+
n ) = inf

u∈M+
λ (Ω)

Jλ(u) = α+
λ < 0.

Since Jλ is coercive, u+
n is bounded in W

1,p(x)
0 (Ω). Thus, we may assume

that, without loss of generality, u+
n ⇀ u+

0 in W
1,p(x)
0 (Ω) and by the compact

embeddings we have
u+

n → u+
0 in L

q(x)
a(x) (Ω) ,
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and
u+

n → u+
0 in L

h(x)
b(x) (Ω) .

Now, we shall prove u+
n → u+

0 in W
1,p(x)
0 (Ω). Otherwise, suppose u+

n 9 u+
0 in

W
1,p(x)
0 (Ω). Then

∫

Ω

∣∣∇u+
0

∣∣p(x)
dx < lim

n→∞
inf

∫

Ω

∣∣∇u+
n

∣∣p(x)
dx.

Moreover, by the compact embeddings we have
∫

Ω

a(x)
∣∣u+

0

∣∣q(x)
dx = lim

n→∞
inf

∫

Ω

a(x)
∣∣u+

n

∣∣q(x)
dx,

∫

Ω

b(x)
∣∣u+

0

∣∣h(x)
dx = lim

n→∞
inf

∫

Ω

b(x)
∣∣u+

n

∣∣h(x)
dx.

Using the fact that 〈J ′λ(u+
n ), u+

n 〉 = 0 and Theorem 2.8, we can write the
followings

Jλ(u+
n ) ≥

(
1

p+
− 1

h−

) ∫

Ω

∣∣∇u+
n

∣∣p(x)
dx+λ

(
1

h−
− 1

q−

)∫

Ω

a(x)
∣∣u+

n

∣∣q(x)
dx,

lim
n→∞

Jλ(u+
n ) ≥

(
1

p+
− 1

h−

)
lim

n→∞

∫

Ω

∣∣∇u+
n

∣∣p(x)
dx

+ λ

(
1

h−
− 1

q−

)
lim

n→∞

∫

Ω

a(x)
∣∣u+

n

∣∣q(x)
dx,

α+
λ = inf

u∈M+
λ

Jλ(u)

>

(
1

p+
− 1

h−

) ∥∥u+
0

∥∥p−
+ c7λ

(
1

h−
− 1

q−

) (∥∥u+
0

∥∥q−
+

∥∥u+
0

∥∥q+)
,

since p− > q+, for
∥∥u+

0

∥∥ > 1, we have

α+
λ = inf

u∈M+
λ

Jλ(u) > 0.

However, in Lemma 3.4 it was showed that for any u ∈ M+
λ (Ω), Jλ(u) < 0.

So, this is a contradiction. Hence, u+
n → u+

0 in W
1,p(x)
0 (Ω) and

Jλ(u+
0 ) = lim

n→∞
Jλ(u+

n ) = inf
u∈M+

λ (Ω)
Jλ(u).

Thus, u+
0 is a minimizer for Jλ on M+

λ (Ω) . ¤

Lemma 3.6. If 0 < λ < λ1, then for all u ∈ M−
λ (Ω), Jλ(u) > 0.
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Proof. Let u ∈ Mλ (Ω). By definition of Jλ(u) and (3.1), we have

Jλ(u) ≥ 1
p+

∫

Ω

|∇u|p(x)
dx− λ

q−

∫

Ω

a(x) |u|q(x)
dx− 1

h−

∫

Ω

b (x) |u|h(x)
dx,

and ∫

Ω

b (x) |u|h(x)
dx =

∫

Ω

|∇u|p(x)
dx− λ

∫

Ω

a (x) |u|q(x)
dx.

Using the two expressions above, it follows

Jλ(u) ≥ 1
p+

∫

Ω

|∇u|p(x)
dx− λ

q−

∫

Ω

a(x) |u|q(x)
dx

− 1
h−




∫

Ω

|∇u|p(x)
dx− λ

∫

Ω

a (x) |u|q(x)
dx




≥
(

1
p+

− 1
h−

) ∫

Ω

|∇u|p(x)
dx + λ

(
1

h−
− 1

q−

) ∫

Ω

a(x) |u|q(x)
dx.

By Propositions 2.2, 2.9, and the condition p− > q+, it follows

Jλ(u) ≥
(

1
p+

− 1
h−

)
‖u‖p− + c10λ

(
1

h−
− 1

q−

)
‖u‖q+

≥
(

h− − p+

p+h−
+ c10λ

q− − h−

q−h−

)
‖u‖p−

.

So, if we choose λ <
q−(h−−p+)

c10p+(h−−q−) , we get Jλ(u) > 0. Moreover, if we consider
the facts Mλ (Ω) = M+

λ (Ω)∪M−
λ (Ω) (see Lemma 3.3), M+

λ (Ω)∩M−
λ (Ω) = ∅,

and Lemma 3.4, we must have u ∈ M−
λ (Ω) . ¤

Theorem 3.7. If 0 < λ < λ1, there exists a minimizer of Jλ on M−
λ (Ω).

Proof. Since Jλ is bounded below on Mλ (Ω) and so on M−
λ (Ω), then there

exits a minimizing sequence {u−n } ⊆ M−
λ (Ω) such that

lim
n→∞

Jλ(u−n ) = inf
u∈M−

λ (Ω)
Jλ(u) = α−λ > 0.

Since Jλ is coercive, u−n is bounded in W
1,p(x)
0 (Ω). Thus, we may assume

that, without loss of generality, u−n ⇀ u−0 in W
1,p(x)
0 (Ω) and by the compact

embeddings we have

u−n → u−0 in L
q(x)
a(x) (Ω) ,

and
u−n → u−0 in L

h(x)
b(x) (Ω) .
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Moreover, if u−0 ∈ M−
λ (Ω), then there is a constant t > 0 such that tu−0

∈ M−
λ (Ω) and Jλ(u−0 ) ≥ Jλ(tu−0 ). Indeed, since

I ′λ(u) =
∫

Ω

p (x) |∇u|p(x)
dx− λ

∫

Ω

q (x) a (x) |u|q(x)
dx−

∫

Ω

h (x) b (x) |u|h(x)
dx,

then,

I ′λ(tu−0 ) =
∫

Ω

p (x)
∣∣∇tu−0

∣∣p(x)
dx− λ

∫

Ω

q (x) a (x)
∣∣tu−0

∣∣q(x)
dx−

∫

Ω

h (x) b (x)
∣∣tu−0

∣∣h(x)
dx

≤ tp
+
p+

∫

Ω

∣∣∇u−0
∣∣p(x)

dx− λtq
−
q−

∫

Ω

a (x)
∣∣u−0

∣∣q(x)
dx− th

−
h−

∫

Ω

b (x)
∣∣u−0

∣∣h(x)
dx.

Since q− < p+ < h−, and by the assumptions on a and b, it follows I ′λ(tu−0 ) < 0.
Hence, by the definition of M−

λ (Ω), tu−0 ∈ M−
λ (Ω).

Now, we shall show u−n → u−0 in W
1,p(x)
0 (Ω). Otherwise, suppose u−n 9 u−0

in W
1,p(x)
0 (Ω). Then using the fact that

∫

Ω

∣∣∇u−0
∣∣p(x)

dx < lim
n→∞

inf
∫

Ω

∣∣∇u−n
∣∣p(x)

dx,

we have,

Jλ(tu−0 ) ≤ tp
+

p−

∫

Ω

∣∣∇u−0
∣∣p(x)

dx− λ
tq
−

q+

∫

Ω

a(x)
∣∣u−0

∣∣q(x)
dx− th

−

h+

∫

Ω

b(x)
∣∣u−0

∣∣h(x)
dx

< lim
n→∞


 tp

+

p−

∫

Ω

∣∣∇u−n
∣∣p(x)

dx− λ
tq
−

q+

∫

Ω

a(x)
∣∣u−n

∣∣q(x)
dx− th

−

h+

∫

Ω

b(x)
∣∣u−n

∣∣h(x)
dx




≤ lim
n→∞

Jλ(tu−n ) ≤ lim
n→∞

Jλ(u−n ) = inf
u∈M−

λ (Ω)
Jλ(u) = α−λ .

This implies that Jλ(tu−0 ) < inf
u∈M−

λ (Ω)
Jλ(u) = α−λ , which is a contradiction.

Hence, u−n → u−0 in W
1,p(x)
0 (Ω) and so

Jλ(u−0 ) = lim
n→∞

Jλ(u−n ) = inf
u∈M−

λ (Ω)
Jλ(u).

Thus, u−0 is a minimizer for Jλ on M−
λ (Ω). ¤

Corollary 3.8. By Theorems 3.5 and 3.7, we conclude that there exists u+
0 ∈

M+
λ (Ω) and u−0 ∈ M−

λ (Ω) such that Jλ(u+
0 ) = inf

u∈M+
λ (Ω)

Jλ(u) and Jλ(u−0 ) =

inf
u∈M−

λ (Ω)
Jλ(u). Moreover, since Jλ(u±0 ) = Jλ(|u±0 |) and

∣∣u±0
∣∣ ∈ M±

λ (Ω), we

may assume u±0 ≥ 0. By Theorem 3.1, u±0 are critical points of Jλ on W
1,p(x)
0 (Ω)

and hence are weak solutions (and so by standard regularity results classical
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solutions) of (Eλ). Finally, by the Harnack inequality due to [25, 27], we ob-
tain that u±0 are positive solutions of (Eλ).
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