Browse > Article
http://dx.doi.org/10.4134/JKMS.2010.47.4.845

THE NEHARI MANIFOLD APPROACH FOR DIRICHLET PROBLEM INVOLVING THE p(x)-LAPLACIAN EQUATION  

Mashiyev, Rabil A. (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS DICLE UNIVERSITY)
Ogras, Sezai (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS DICLE UNIVERSITY)
Yucedag, Zehra (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS DICLE UNIVERSITY)
Avci, Mustafa (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS DICLE UNIVERSITY)
Publication Information
Journal of the Korean Mathematical Society / v.47, no.4, 2010 , pp. 845-860 More about this Journal
Abstract
In this paper, using the Nehari manifold approach and some variational techniques, we discuss the multiplicity of positive solutions for the p(x)-Laplacian problems with non-negative weight functions and prove that an elliptic equation has at least two positive solutions.
Keywords
variable exponent Lebesgue-Sobolev spaces; p(x)-Laplacian; variational methods; Nehari manifold; multiple positive solutions;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 X. L. Fan and D. Zhao, On the spaces $L^{p(x)}({\Omega})$ and $W^{m,p(x)}({\Omega})$, J. Math. Anal. Appl. 263 (2001), no. 2, 424-446.   DOI   ScienceOn
2 X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), no. 8, 1843-1852.   DOI   ScienceOn
3 X. L. Fan, Q. Zhang, and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), no. 2, 306-317.   DOI   ScienceOn
4 T. C. Halsey, Electrorheological fluids, Science 258 (1992), 761-766.   DOI   ScienceOn
5 P. Harjulehto, P. Hasto, M. Koskenoja, and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal. 25 (2006), no. 3, 205-222.   DOI
6 P. Hasto, The p(x)-Laplacian and applications, J. Anal. 15 (2007), 53-62.
7 E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259.   DOI
8 G. A. Afrouzi, S. Mahdavi, and Z. Naghizadeh, The Nehari manifold for p-Laplacian equation with Dirichlet boundary condition, Nonlinear Anal. Model. Control 12 (2007), no. 2, 143-155.
9 A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543.   DOI   ScienceOn
10 K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations 193 (2003), no. 2, 481-499.   DOI   ScienceOn
11 O. M. Buhrii and R. A. Mashiyev, Uniqueness of solutions of the parabolic variation inequality with variable exponent of nonlinearity, Nonlinear Anal. 10 (2009), 2325-2331.
12 V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, (russian) Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710, 877.
13 M. Mihailescu, Existence and multiplicity of solutions for an elliptic equation with p(x)-growth conditions, Glasg. Math. J. 48 (2006), no. 3, 411-418.   DOI   ScienceOn
14 M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2073, 2625-2641.   DOI   ScienceOn
15 M. Mihailescu and V. Radulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929-2937.   DOI   ScienceOn
16 S. Ogras, R. A. Mashiyev, M. Avci, and Z. Yucedag, Existence of solutions for a class of elliptic systems in $R^N$ involving the (p(x), q(x))-Laplacian, J. Inequal. Appl. 2008 (2008), Art. Id 612938, 16 pp.
17 M. Ruzicka, Electrorheological Fluids: modeling and mathematical theory, Springer Lecture Notes in Math. Vol. 1748, Springer Verlag, Berlin, Heidelberg, New York, 2000.
18 N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747.   DOI
19 T. F. Wu, Multiplicity of positive solution of p-Laplacian problems with sign-changing weight functions, Int. J. Math. Anal. (Ruse) 1 (2007), no. 9-12, 557-563.
20 X. Zhang and X. Liu, The local boundedness and Harnack inequality of p(x)-Laplace equation, J. Math. Anal. Appl. 332 (2007), no. 1, 209-218.   DOI   ScienceOn
21 O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618.
22 R. A. Mashiyev, Some properties of variable Sobolev capacity, Taiwanese J. Math. 12 (2008), no. 3, 671-678.   DOI
23 J. Chabrowski and Y. Fu, Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 306 (2005), no. 2, 604-618.   DOI   ScienceOn
24 L. Diening, Theoretical and Numerical Results for Electrorheological Fluids, Ph. D. thesis, University of Frieburg, Germany, 2002.
25 D. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3, 267-293.   DOI
26 A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004), no. 1, 30-42.   DOI   ScienceOn
27 X. L. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 312 (2005), no. 2, 464-477.   DOI   ScienceOn
28 X. L. Fan, J. S. Shen, and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}({\Omega})$, J. Math. Anal. Appl. 262 (2001), no. 2, 749-760.   DOI   ScienceOn