Effect of Nanotube Length on Rheological Characteristics of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites Prepared by Latex Technology

라텍스 기법으로 제조한 폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 나노튜브 길이가 유변학적 특성에 미치는 영향

  • Woo, Dong-Kyun (Department of Polymer Engineering, The University of Suwon) ;
  • Noh, Won-Jin (Department of Polymer Engineering, The University of Suwon) ;
  • Lee, Seong-Jae (Department of Polymer Engineering, The University of Suwon)
  • 우동균 (수원대학교 공과대학 신소재공학과) ;
  • 노원진 (수원대학교 공과대학 신소재공학과) ;
  • 이성재 (수원대학교 공과대학 신소재공학과)
  • Received : 2010.05.31
  • Accepted : 2010.09.13
  • Published : 2010.11.25

Abstract

Polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via latex technology and the effect of nanotube length on rheological properties were investigated. Monodisperse PS particle was synthesized by the emulsifier-free emulsion polymerization and two types of MWCNTs were used after surface modification to improve dispersion state and to remove impurities. Final nanocomposites were prepared by the freeze-drying process after dispersing the PS particles and the surface-modified MWCNTs in a ultrasonic bath. The effects of MWCNT content and nanotube length on rheological properties were evaluated by imposing the small-amplitude oscillatory shear flow. The PS/MWCNT nanocomposites showed that rheological properties were enhanced as the amount and length of MWCNT increased. It is speculated that the rheological characteristics of nanocomposites change from liquid-like to solid-like as the MWCNT amount increases, and the critical concentration to achieve network structure decreases as the nanotube length increases.

라텍스 블렌딩 기법을 이용하여 폴리스티렌(PS)/다중벽 탄소나노튜브(MWCNT) 나노복합재료를 제조하여 나노튜브 길이에 따른 나노복합재료의 유변학적 특성을 고찰하였다. 나노복합재료 제조에 사용된 단분산 PS 입자는 무유화제 유화중합으로 제조하였고, MWCNT는 불순물 제거와 분산성 향상을 위해 표면개질 과정을 거친 후 사용하였다. 최종적인 나노복합재료는 단분산 PS 입자와 개질한 MWCNT를 초음파 교반조에서 분산시킨 후 동결건조 과정을 거쳐 제조하였다. 나노복합재료의 MWCNT 함량과 나노튜브 길이에 따른 유변학적 특성은 소진폭 진동 전단유동을 부과시켜 평가하였다. 본 연구에서 고찰한 PS/MWCNT 나노복합재료는 MWCNT의 함량이 증가할수록, 나노튜브 길이가 길수록 유변물성 향상 효과가 뚜렷하였다. 이는 MWCNT 함량이 증가할수록 나노복합재료의 유변학적 특성이 액체적 특성에서 점차 고체적 특성으로 변화하기 때문이며, 나노튜브 길이가 길수록 네트워크 구조를 달성하는 임계 농도가 작아지기 때문인 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. M. Jung and J. W. Cho, J. Korean Fiber Sci., 41, 73 (2004).
  2. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  3. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature, 381, 678 (1996). https://doi.org/10.1038/381678a0
  4. J. Yu, K. Lu, E. Sourty, N. Grossiord, C. E. Koning, and J. Loos, Carbon, 45, 2897 (2007). https://doi.org/10.1016/j.carbon.2007.10.005
  5. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nature, 384, 147 (1996). https://doi.org/10.1038/384147a0
  6. F. Balavoine, P. Schultz, C. Richard, V. Mallouh, T. W. Ebbesen, and C. Mioskowski, Angew. Chem. Int. Ed., 38, 1912 (1999). https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1912::AID-ANIE1912>3.0.CO;2-2
  7. D. Pantarotto, C. D. Partidos, J. Hoebeke, F. Brown, E. Kramer, J. P. Briand, S. Muller, M. Prato, and A. Bianco, Chem. Biol., 10, 961 (2003). https://doi.org/10.1016/j.chembiol.2003.09.011
  8. B. H. Cipiriano, T. Kashiwagi, S. R. Raghavan, Y. Yang, E. A. Grulke, K. Yamamoto, J. R. Shields, and J. F. Douglas, Polymer, 48, 6086 (2007). https://doi.org/10.1016/j.polymer.2007.07.070
  9. P. Potschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002). https://doi.org/10.1016/S0032-3861(02)00151-9
  10. J. Zhao, A. B. Morgan, and J. D. Harris, Polymer, 46, 8641 (2005). https://doi.org/10.1016/j.polymer.2005.04.038
  11. R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, and K. I. Winey, Chem. Phys. Lett., 330, 219 (2000). https://doi.org/10.1016/S0009-2614(00)01013-7
  12. M. A. L. Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, Carbon, 43, 1499 (2005). https://doi.org/10.1016/j.carbon.2005.01.031
  13. P. Potschke, A. R. Bhattacharyya, and A. Janke, Carbon, 42, 965 (2004). https://doi.org/10.1016/j.carbon.2003.12.001
  14. C. A. Cooper, D. Ravich, D. Lips, J. Mayer, and H. D. Wagner, Compos. Sci. Technol., 62, 1105 (2002). https://doi.org/10.1016/S0266-3538(02)00056-8
  15. S. Kumar, T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X. Zhang, R. A. Vaia, C. Park, W. W. Adams, R. H. Hauge, R. E. Smally, S. Ramesh, and P. A. Willis, Macromolecules, 35, 9039 (2002). https://doi.org/10.1021/ma0205055
  16. H. J. Barraza, F. Pompeo, E. A. O'Rear, and D. E. Resasco, Nano Lett., 2, 797 (2002). https://doi.org/10.1021/nl0256208
  17. O. Regev, P. N. B. ElKati, J. Loos, and C. E. Koning, Adv. Mater., 16, 248 (2004). https://doi.org/10.1002/adma.200305728
  18. J. L. Ou, J. K. Yang, and H. Chen, Eur. Polym. J., 37, 789 (2001). https://doi.org/10.1016/S0014-3057(00)00175-0
  19. T. M. Wu and E. C. Chen, Comp. Sci. Tech., 68, 2254 (2008). https://doi.org/10.1016/j.compscitech.2008.04.010
  20. J. Sun and L. Gao, Carbon, 41, 1063 (2003). https://doi.org/10.1016/S0008-6223(02)00441-4
  21. Y. H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, and D. Wu, Carbon, 41, 1057 (2003). https://doi.org/10.1016/S0008-6223(02)00440-2
  22. G. Yamamoto, M. Omori, T. Hashida, and H. Kimura, Nano-technology, 19, 315708 (2008). https://doi.org/10.1088/0957-4484/19/31/315708
  23. J. S. Moon, J. H. Park, T. Y. Lee, Y. W. Kim, J. B. Yoo, C. Y. Park, J. M. Kim, and K. W. Jin, Diamond Relat. Mater., 14, 1882 (2005). https://doi.org/10.1016/j.diamond.2005.07.015
  24. S. Y. Lee and S. J. Park, Bull. Korean Chem. Soc., 31, 1596 (2010). https://doi.org/10.5012/bkcs.2010.31.6.1596
  25. J. Lee, C. K. Hong, S. Choe, and S. E. Shim, J. Colloid Interface Sci., 310, 112 (2007). https://doi.org/10.1016/j.jcis.2006.11.008
  26. Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, C. K. Kum, J. Joo, and W. N. Kim, Polymer, 47, 4434 (2006). https://doi.org/10.1016/j.polymer.2006.04.008
  27. D. K. Woo, B. C. Kim, and S. J. Lee, Korea-Australia Rheol. J., 21, 185 (2009).