Preparation and Characterization of Pioglitazone Loaded PLGA Nanospheres for the Treatment of Type 2 Diabetes

제2형 당뇨병 치료제인 Pioglitazone을 봉입하기 위한 PLGA 나노입자 제조 및 분석

  • Woo, Hyun-Ju (Department of Chemical and Biological Engineering, Chungju National University) ;
  • Kim, Jin-Soo (Department of Chemical and Biological Engineering, Chungju National University) ;
  • Kim, Jun-Gi (Department of Chemical and Biological Engineering, Chungju National University) ;
  • Nurunnabi, Md. (Department of Chemical and Biological Engineering, Chungju National University) ;
  • Huh, Kang-Moo (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Cho, Kwang-Jae (Department of Otolaryngology-Head & Neck Surgery, The Catholic University of Korea, College of Medicine Uijeongbu St. Mary's Hospital) ;
  • Lee, Yong-Kyu (Department of Chemical and Biological Engineering, Chungju National University)
  • 우현주 (충주대학교 화공생물공학과) ;
  • 김진수 (충주대학교 화공생물공학과) ;
  • 김준기 (충주대학교 화공생물공학과) ;
  • 너루라비 (충주대학교 화공생물공학과) ;
  • 허강무 (충남대학교 고분자공학과) ;
  • 조광재 (가톨릭의대 의과대학) ;
  • 이용규 (충주대학교 화공생물공학과)
  • Received : 2010.05.26
  • Accepted : 2010.07.25
  • Published : 2010.11.25

Abstract

The pioglitazone loaded poly(lactide-co-glycolide)(PLGA) nanospheres were prepared by emulsion-evaporation method and optimized for particle size and entrapment efficiency. The optimized particles were 125~170 nm in size with narrow size distribution and showed above 85% entrapment efficiency at 30% of pioglitazone loading when prepared with 3% w/v of poly(vinyl alcohol) (PVA) as a surfactant. These particulate carriers exhibited a controlled in vitro release of pioglitazone for 40 days at a nearly constant rate. The pioglitazone loaded PLGA nanospheres were not only effective to reduce the blood sugar level of diabetic rats but also non-toxic for the animal body, in particular for sensitive organs like kidney, liver, heart, lung and spleen. These results indicate that PLGA nanospheres have a great potential for oral delivery of pioglitazone.

Pioglitazone을 봉입한 poly(lactide-co-glycolide)(PLGA) 나노입자를 emulsion-evaporation 방법을 이용하여 제조하여 최적의 나노입자와 봉입률을 조절하였다. 제조된 나노입자의 크기는 125~170 nm이었으며 30% pioglitazone이 봉입된 나노입자(3% PVA)의 봉입률은 85% 이상이었다. 이러한 나노입자들은 40일 동안 일정하게 용출이 되었다. 당뇨병 모델을 이용한 동물실험에서 글루코오스 농도를 저하시켰을 뿐만 아니라, 조직검사에서는 낮은 독성을 가지고 있는 것을 확인하였다. 이러한 결과는 pioglitazone 경구투여를 위한 약물전달을 위한 운반체로 사용될 수 있음을 확인하였다.

Keywords

References

  1. D. Peng, K. Huang, Y. Liu, and S. Liu, Int. J. Pharm., 342, 82 (2007). https://doi.org/10.1016/j.ijpharm.2007.05.002
  2. I. Kim and S. Kim, Int. J. Pharm., 245, 67 (2002). https://doi.org/10.1016/S0378-5173(02)00336-8
  3. III. J. W. Jones and J. J. Francis, Advances in Therapy, 17, 213 (2000). https://doi.org/10.1007/BF02853160
  4. J. Heller, S. H. Pangburn, and D. W. H. Penhale, ACS Symposium Series, 348, 172 (1987).
  5. E. W. Neuse, Met. Based Drugs, 2008, 1 (2008).
  6. R. L. Juliano, Annal. Biomed. Eng., 19, 233(1987).
  7. A. S. Ruben, M. Francois, H. Thomas, and P. Axel, Chem. Res. Toxicol., 19, 1106 (2006). https://doi.org/10.1021/tx050353h
  8. W. B. Daniel, A. Z. John, L. P. Mark, A. J. Patricia, and J. E. Sean, Biochem., 48, 10193 (2009). https://doi.org/10.1021/bi9016445
  9. I. M. Evers, P. G. J. Nikkels, J. M. Sikkema, and G. H. A. Visser, Placenta., 24, 819 (2003). https://doi.org/10.1016/S0143-4004(03)00128-0
  10. J. S. Skyler, J. Med. Chem., 47, 4113 (2004). https://doi.org/10.1021/jm0306273
  11. F. Zhang, A. Sjoholm, and Q. Zhang, Biochem. Biophys. Res. Commun., 351, 750 (2006). https://doi.org/10.1016/j.bbrc.2006.10.103
  12. R. H. Brad, J. Med. Chem., 47, 4118 (2004). https://doi.org/10.1021/jm030631e
  13. D. Einhorn, M. Rendell, J. Rosenzweig, J. W. Egan, A. L. Mathisen, and R. L. Schneider, Clin. Ther., 22, 1395 (2000). https://doi.org/10.1016/S0149-2918(00)83039-8
  14. J. M. Rosenstock, Diabetes Res. Clin. Pract., 50, 61 (2000).
  15. S. Rosenblatt, Diabetes Res. Clin. Pract., 50, 60 (2000).
  16. K. Nakamura, E. Nara, and Y. Akiyama, J. Control. Release, 111, 309 (2006). https://doi.org/10.1016/j.jconrel.2005.12.018
  17. Y. S. O. Benjamin, H. R. Sudhir, L. Y. Lee, L. Fan, H-S. Lee, N. V. Sahinidis, and C.-H. Wang, Biomaterials, 30, 3189 (2009). https://doi.org/10.1016/j.biomaterials.2009.02.030
  18. R. N. Gursoy and S. Benita, Biomed. Pharmacother., 58, 173 (2004). https://doi.org/10.1016/j.biopha.2004.02.001
  19. L. Amanda, B. L. Martin, and R. G. Elizabeth, J. Am. Chem. Soc., 131, 734 (2009). https://doi.org/10.1021/ja807220u
  20. Y. Chang and I. Chu, Eur. Polym. J., 44, 3922 (2008). https://doi.org/10.1016/j.eurpolymj.2008.09.021
  21. T. Satoh, Y. Higuchi, S. Kawakami, M. Hashida, H. Kagechika, K. Shudo, and M. Yokoyama, J. Control. Release, 136, 187 (2009). https://doi.org/10.1016/j.jconrel.2009.02.024
  22. T. Courant, V. G. Roullin, C. Cadiou, F. Delavoie, M. Molinari, M. C. Andry, and F. Chuburu, Int. J. Pharm., 379, 226 (2009). https://doi.org/10.1016/j.ijpharm.2009.03.036
  23. Y. Yin, D. Chen, M. Qiao, Z. Lu, and H. Hu, J. Control. Release, 116, 337 (2006). https://doi.org/10.1016/j.jconrel.2006.09.015
  24. J. L. Italia, D. K. Bhatt, V. Bhardwaj, K. Tikoo, and M. N. Kumar, J. Control. Release, 119, 197 (2007). https://doi.org/10.1016/j.jconrel.2007.02.004