Fabrications and Properties of Colorless Polyimide Films Depending on Various Heat Treatment Conditions via Crosslinkable Monomer

가교 가능한 단량체를 이용한 무색투명 폴리이미드 필름 제조와 다양한 열처리에 따른 성질

  • Choi, Il-Hwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 최일환 (금오공과대학교 고분자공학과) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Received : 2009.11.23
  • Accepted : 2010.04.27
  • Published : 2010.09.25

Abstract

Poly(amic acid)(PAA) was prepared by reaction of bicyclo(2,2,2)oct-7-ene-2,3,5,6-tetracarboxylicdianhydride(BTDA) containing double bond for crosslinking and bis[4-(3-aminophenoxy) phenyl] sulfone(BAPS) in N,N-dimethylacetamide(DMAc). The cast film of PAA was heat-treated at different temperatures to create polyimide(PI) films. With increasing thermal crosslinking temperatures from 250 to $350^{\circ}C$, the thermo-mechanical properties, degree of crosslinking, and optical transparency of the cross-linked PI were investigated. The maximum enhancement in the thermo-mechanical properties was observed at a heat treatment condition of $350^{\circ}C$. However, the optical transparency was found to be optimal for $250^{\circ}C$ heat treatment. The degree of crosslinking in NMR was determined to be 85% to 93% with increasing annealing temperature conditions from 250 to $350^{\circ}C$.

폴리아믹산(PAA)은 가교가 가능한 2중 결합을 갖는 bicyclo(2,2,2)oct-7-ene-2,3,5,6-tetracarboxy-licdianhydride(BTDA)와 bis[4-(3-aminophenoxy)phenyl] sulfone(BAPS)을 N,N-dimethylacetamide(DMAc) 용매에서 반응하여 얻어졌으며, 폴리이미드(PI) 필름은 PAA를 캐스팅하여 각각 다른 반응 온도에서 열처리를 통해 얻었다. 가교 온도를 $250{\sim}350^{\circ}C$까지 증가하여 얻은 가교된 PI의 열적-기계적 성질, 가교도, 광학적 특성을 열처리 온도에 따라 조사하였다. 열적-기계적 성질은 $350^{\circ}C$에서 열처리되었을 때 최대 값을 나타냈으며, 광학적 특성은 $250^{\circ}C$에서 열처리된 필름이 가장 우수한 광학특성을 보였다. $250{\sim}350^{\circ}C$까지 열처리에 따른 가교도는 NMR 상에서 85~93%를 나타냈다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. G. J. Shin, J. H. Chi, W.-C. Zin, T. H. Chang, M. H. Ree, and J. C. Jung, Polymer(Korea), 30, 97 (2006).
  2. M. H. Yi and K.-Y. Choi, Polym. Sci. Technol., 11, 741 (2000).
  3. H. Li, J. Liu, K. Wang, L. Fan, and S. Yang, Polymer, 47, 1443 (2006). https://doi.org/10.1016/j.polymer.2005.12.074
  4. X.-L. Wang, Y.-F. Li, C.-L. Gong, T. Ma, and F.-C. Yang, J. Fluor. Chem., 129, 56 (2008). https://doi.org/10.1016/j.jfluchem.2007.08.014
  5. S. Takahashi and D. R. Paul, Polymer, 47, 7519 (2006).
  6. D.-J. Liaw, C.-C. Huang, and W.-H. Chen, Polymer, 47, 2337 (2006). https://doi.org/10.1016/j.polymer.2006.01.028
  7. C. K. Lee, S. Sundar, J. U. Kwon, and H. S. Han, J. Polym. Sci. Part A: Polym. Chem., 42, 3612 (2004). https://doi.org/10.1002/pola.20214
  8. J. C. Ha, J.-C. Kim, and J.-H. Chang, J. Appl. Polym. Sci., 106, 4192 (2007). https://doi.org/10.1002/app.26987
  9. H.-S. Jin and J.-H. Chang, J. Appl. Polym. Sci., 107, 109 (2008). https://doi.org/10.1002/app.26173
  10. H.-S. Jin and J.-H. Chang, Polymer(Korea), 32, 256 (2008).
  11. M.-H. Park, S.-J. Yang, W. B. Jang, and H. S. Han, Korean Chem. Eng. Res., 42, 305 (2005).
  12. J.-S. Park and J.-H. Chang, Polymer(Korea), 33, 313 (2009).
  13. J.-H. Chang, K. M. Park, S.-M. Lee, and J. B. Oh, J. Polym. Sci. Part B: Polym. Phys., 38, 2537 (2000). https://doi.org/10.1002/1099-0488(20001001)38:19<2537::AID-POLB50>3.0.CO;2-V
  14. G. P. Wang, T. C. Chang, Y. S. Hong, and Y. S. Chiu, Polymer, 43, 2191 (2002). https://doi.org/10.1016/S0032-3861(02)00016-2
  15. C.-L. Chung and S.-H. Hsiao, Polymer, 49, 2476 (2008). https://doi.org/10.1016/j.polymer.2008.03.047
  16. K. S. Yang, D. D. Edie, D. Y. Lim, Y. M. Kim, and Y. O. Choi, Carbon, 41, 2039 (2003). https://doi.org/10.1016/S0008-6223(03)00174-X
  17. H.-W. Wang, R.-X. Dong, H.-C. Chu, K.-C. Chang, and W.-C. Lee, Mater. Chem. Phys., 94, 42 (2005). https://doi.org/10.1016/j.matchemphys.2005.04.037
  18. C.-Y. Yang, S. L.-C. Hsu, and J. S. Chen, J. Appl. Polym. Sci., 98, 2064 (2005). https://doi.org/10.1002/app.22410
  19. Z. Ge, L. Fan, and S. Yang, Eur. Polym. J., 44, 1252 (2008). https://doi.org/10.1016/j.eurpolymj.2008.01.041
  20. J. Yin, Y.-F. Ye, L. Li, Y.-L. Zhang, Y. Huang, and Z.-G. Wang, Eur. Polym. J., 35, 1367 (1999). https://doi.org/10.1016/S0014-3057(98)00203-1
  21. F. Yang, J. Z, Y. Li, S. Zhang, Y. Shao, H. Shao, T. Ma, and C. Gong, Eur. Polym. J., 45, 2053 (2009). https://doi.org/10.1016/j.eurpolymj.2009.03.021
  22. W. B. Jang, D. Y. Shin, S. H. Choi, S. G. Park, and H. S. Han, Polymer, 48, 2130 (2007). https://doi.org/10.1016/j.polymer.2007.02.023
  23. J. He, K. Horie, R. Yokota, and F. He, Polymer, 42 4063 (2001). https://doi.org/10.1016/S0032-3861(00)00803-X
  24. K. S. Seo, K. I. Sul, Y. S. Kim, K.-Y. Choi, D. H. Suh, and J. C. Won, Polymer(Korea), 31, 130 (2007).
  25. M. Hasegawa, M. Horiuchi, and Y. Wada, High Perform. Polym., 19, 175 (2007). https://doi.org/10.1177/0954008306073178
  26. M. Hasegawa and K. Horie, Prog. Polym. Sci., 26, 259 (2001). https://doi.org/10.1016/S0079-6700(00)00042-3
  27. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Editors, Introduction to Spectroscopy, Brooks/Cole, Thomson Learning Inc, Washington, USA, Chapter 7 (2001).
  28. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Editors, Introduction to Spectroscopy, Brooks/Cole, Thomson Learning Inc, Washington, USA, Chapter 3 (2001).
  29. X.-L. Wang, Y.-F. Li, C.-L. Gong, T. Ma, and F.-C. Yang, J. Fluor. Chem., 129, 56 (2008). https://doi.org/10.1016/j.jfluchem.2007.08.014
  30. C.-P. Yang, Y.-Y. Su, S.-J. Wen, and S.-H. Hsiao, Polymer, 47, 7021 (2006). https://doi.org/10.1016/j.polymer.2006.07.066
  31. J. S. Park and J.-H. Chang, Polymer(Korea), 33, 313 (2009).