• Title/Summary/Keyword: crosslinkable monomer

Search Result 4, Processing Time 0.022 seconds

UV-Curable Fluorinated Crosslinkable Polyurethane-Acrylates for Marine Antifouling Coatings

  • Park, Jin-Myung;Kim, Sung Yeol;An, Seung-Kook;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.148-157
    • /
    • 2017
  • To prepare UV-curable polyurethane-acrylate oligomer, NCO-terminated urethane prepolymers with trimethylolpropane, [TMP; 0 (0), 0.1 (0.021) and 0.2 (0.043) mole (mole fraction)] as crosslinkable tri-functional chain extender were end-capped with pentaerythritol triacrylate [PETA; 2.0 (0.400), 1.7 (0.354) and 1.4 (0.304) mole (mole fraction)] with one hydroxyl group/three vinyl functionalities. The stable as-formulated UV-curable polyurethane-acrylates [stable mixtures of PETA-capped oligomer/reactive acrylic monomer diluents without/with heptadecafluorodecyl methacrylate (PFA; 0, 6 and 9 wt%)] were formed up to 0.2 (0.043) mole (mole fraction) of TMP content in the prepolymer, while homogeneous-mixing failed at 0.3 (0.068) mole (mole fraction), in which the crosslink density in NCO-terminated urethane prepolymer was too high to enable the formation of stable mixture. This study examined the effect of TMP/PETA molar ratio and heptadecafluorodecyl methacrylate (PFA) content (wt%) on the properties of UV-cured polyurethane-acrylates as marine antifouling coating materials. The properties of UV-cured polyurethane-acrylate were found to be significantly dependent on the crosslinkable TMP/PETA ratio and PFA content. With the increasing of the TMP and PFA contents, the contact angles increased, and consequently the surface tension decreased. The adhesion of algae/barnacles to PFA contained film samples were found to be sufficiently weak to allow their easy removal. These results suggest that the UV-cured samples containing PFA have strong potential as coating materials for antifouling applications.

Fabrications and Properties of Colorless Polyimide Films Depending on Various Heat Treatment Conditions via Crosslinkable Monomer (가교 가능한 단량체를 이용한 무색투명 폴리이미드 필름 제조와 다양한 열처리에 따른 성질)

  • Choi, Il-Hwan;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.391-397
    • /
    • 2010
  • Poly(amic acid)(PAA) was prepared by reaction of bicyclo(2,2,2)oct-7-ene-2,3,5,6-tetracarboxylicdianhydride(BTDA) containing double bond for crosslinking and bis[4-(3-aminophenoxy) phenyl] sulfone(BAPS) in N,N-dimethylacetamide(DMAc). The cast film of PAA was heat-treated at different temperatures to create polyimide(PI) films. With increasing thermal crosslinking temperatures from 250 to $350^{\circ}C$, the thermo-mechanical properties, degree of crosslinking, and optical transparency of the cross-linked PI were investigated. The maximum enhancement in the thermo-mechanical properties was observed at a heat treatment condition of $350^{\circ}C$. However, the optical transparency was found to be optimal for $250^{\circ}C$ heat treatment. The degree of crosslinking in NMR was determined to be 85% to 93% with increasing annealing temperature conditions from 250 to $350^{\circ}C$.

Synthesis of Crosslinkable m-Aramid Ionomer Containing Sulfonated Ether Sulfone and Their Characterization for PEMFC Membrane (Sulfonated Ether Sulfone을 포함한 Crosslinkable m-Aramid계 Ionomer의 합성과 연료전지 막으로의 이용)

  • Jung, Hyun-Jin;Kim, Jung-Min;Cho, Chang-Gi
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.202-209
    • /
    • 2010
  • Aromatic copolyamides were prepared and their applicability to proton exchange membrane wasstudied. The copolymer contains thermally stable and mechanically strong poly(m-phenylene isophthalamide) segments, and easily processable and good film forming polysulfone segments. For the copolymer, amineterminated sulfonated ether sulfone monomer, m-phenylene diamine, and isophthaloyl chloride were reacted, and the obtained copolymer was transformed into crosslinkable prepolymer by the reaction with acryloyl chloride. The prepolymer was thermally cured and converted into proton exchange membranes for fuel cell application. Each reaction step and the molecular characteristics of precursor copolymers were monitored and confirmed by $^1H$ NMR, FTIR, and titration. The performance of the membranes was measured in terms of water uptake, proton conductivity, and thermal stability. The water uptake, ion exchange capacity (IEC), and proton conductivity of the membranes increased with the increase of sulfonated ether sulfone segment content. Membrane containing 30 mol% sulfonic acid sulfone segment showed 1.57 meq/g IEC value. Water uptake was limited less than 44 wt% and the highest proton conductivity up to $3.93{\times}10^{-2}S/cm$ ($25^{\circ}C$, RH= 100%) was observed.

Proton Conducting Membrane Based on Crosslinked Sulfonated Polyimide for Direct Methanol Fuel Cell

  • Sung, Kyung-A;Kim, Wan-Keun;Oh, Keun-Hwan;Choo, Min-Ju;Park, Jung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.245-250
    • /
    • 2009
  • Crosslinked membrane based on sulfonated polyimide was prepared by the introduction of crosslinkable monomer in polymerization process and crosslinking during membrane casting. Crosslinked membranes showed different properties from non-crosslinked membranes. Crosslinking decreased methanol crossover and therefore unit cell using crosslinked membrane showed increased open circuit voltage, 0.81 V, in comparison with unit cell using noncrosslinked membrane, 0.71 V. In addition, water uptake of crosslinked membrane, 40.5%, was lower than that of non-crosslinked membrane, 57.0%, and this resulted in improved dimensional stability. However, proton conductivity of crosslinked membranes showed rather low relative to non-crosslinked membrane due to reduced water uptake.