References
- Afsar A.M., Huq N.M.L., and Song J.I.(2010)Analytical solution to a mixed boundary value elastic problem of a roller-guided panel of laminated composite. Arch. Appl. Mech., 80:401-412. https://doi.org/10.1007/s00419-009-0324-z
- Afsar A.M., Nath S.K.D., and Ahmed S.R.(2008) Displacement potential based finite difference solution of orthotropic composite beam under uniformly distributed and point loadings. Mech. Adv. Mater. Struct., 15(5):386-399. https://doi.org/10.1080/15376490801977791
- Ahemd S.R., Idris A.B.M., and Uddin M.W.(1999) An alternative method for numerical solution of mixed boundary-value elastic problems. J. Wave-Mater. Interaction, 14(1-2):12-25.
- Chow L., Conway H.D., and Winter G.(1952) Stresses in deep bars. Trans ASCE 2557.
- Conway H.D.and Ithaca N.Y.(1953) Some problems of orthotropic plane stress. J. App. Mech., Trans ASME 52:72-76.
- Nath S.K.D., Afsar A.M., and Ahmed S.R.(2007a) Displacement potential approach to solution of stiffened orthotropic composite panels under uniaxial tensile load. J. Aero. Eng., IMechE., Part G, 221:869-881. https://doi.org/10.1243/09544100JAERO153
- Nath S.K.D., Afsar A.M., and Ahmed S.R.(2007b) Displacement potential solution of a deep stiffened cantilever beam of orthotropic composite material. J. Strain Analysis IMechE, 42(7):529-541. https://doi.org/10.1243/03093247JSA266
- Timoshenko S. and Goodier V.N.(1979) Theory of Elasticity. McGraw-Hill, New York.
- Uddin M.W.(1966) Finite Difference Solution of Two-dimensional Elastic Problem with Mixed Boundary Conditions. M. Sc. Thesis, Carleton University, Canada.
- Jones R.M.(1975) Mechanics of Composite Materials. 1st ed., Scripta Book Company, Washington, D.C.