Support vector quantile regression for longitudinal data

  • 투고 : 2010.01.03
  • 심사 : 2010.02.12
  • 발행 : 2010.03.31

초록

Support vector quantile regression (SVQR) is capable of providing more complete description of the linear and nonlinear relationships among response and input variables. In this paper we propose a weighted SVQR for the longitudinal data. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are the presented, which illustrate the performance of the proposed SVQR.

키워드

참고문헌

  1. Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerical Mathematics, 31, 377-403.
  2. Geraci, M. and Bottai, M. (2007). Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics, 8, 140-154. https://doi.org/10.1093/biostatistics/kxj039
  3. Hedeker, D. and Gibbons, R. D. (2006). Longitudinal Data Analysis, John Wiley & Sons.
  4. Hwang, C. (2007). Kernel machine for Poisson regression. Journal of Korean Data & Information Science Society, 18, 767-772 .
  5. Hwang, C. (2008). Mixed effects kernel binomial regression. Journal of Korean Data & Information Science Society, 19, 1327-1334 .
  6. Karlsson, A. (2008). Nonlinear quantile regression estimation for longitudinal data. Communications in Statistics - Simulation and Computation, 37, 114-131.
  7. Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebychean spline functions. Journal of Mathematical Analysis and its Applications, 33, 82-95. https://doi.org/10.1016/0022-247X(71)90184-3
  8. Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis, 91, 74-89. https://doi.org/10.1016/j.jmva.2004.05.006
  9. Koenker, R. and Bassett. G. (1978). Regression quantile. Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
  10. Koenker, R. and Hallock, K. F. (2001). Quantile regression. Journal of Economic Perspectives, 40, 122-142.
  11. Koenker, R. and Park, B. J. (1996). An interior point algorithm for nonlinear quantile regression. Journal of Econometrics, 71, 265-283. https://doi.org/10.1016/0304-4076(96)84507-6
  12. Li, Y., Liu, Y. and Zhu, J. (2007). Quantile regression in reproducing kernel hilbert spaces. Journal of the American Statistical Association, 102, 255-268. https://doi.org/10.1198/016214506000000979
  13. Mercer, J. (1909). Functions of positive and ngative type and their cnnection with theory of integral equations. Philosophical Transactions of Royal Society, 415-446.
  14. Shim , J. and Seok, K. H. (2008). Kernel poisson regression for longitudinal data. Journal of Korean Data & Information Science Society, 19, 1353-1360 .
  15. Shim , J., Kim, T. Y., Lee, S. and Hwang, C. (2009). Credibility estimation via kernel mixed effects model. Journal of Korean Data & Information Science Society 20, 445-452 .
  16. Smola, A. and Scholkopf, B. (1998). On a kernel-based method for pattern recognition, regression, approx-imation and operator inversion. Algorithmica, 22, 211-231. https://doi.org/10.1007/PL00013831
  17. Wu, H. and Zhang, J. (2006). Nonparametric regression methods for longitudinal data analysis, Wiley.
  18. Yu, K., Lu, Z. and Stander, J. (2003). Quantile regression: Applications and current research area. The Statistician, 52, Part3, 331-350.
  19. Yuan, M. (2006). GACV for quantile smoothing splines. Computational Statistics and Data Analysis, 50, 813-829. https://doi.org/10.1016/j.csda.2004.10.008