참고문헌
- Arnholt, A. T and Hebert, J. L. (1995). Estimating the mean with known coecient of variation. The American Statistician, 49, 367-369. https://doi.org/10.2307/2684576
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.2307/2289864
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). Bayesian Statistics IV, Oxford University Press, Oxford, 35-60.
- Berger, J. O. and Pericchi, L. R. (1996). The intrinsic bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122. https://doi.org/10.2307/2291387
- Berger, J. O. and Pericchi, L. R. (1998). Accurate and stable bayesian model selection: The median intrinsic bayes factor. Sankya B, 60, 1-18.
- Berger, J. O. and Pericchi, L. R. (2001). Objective bayesian methods for model selection: Introduction and comparison (with discussion). Institute of Mathematical Statistics Lecture Notes-Monograph Series, 38, Ed. P. Lahiri, 135-207, Beachwood Ohio.
- Bhat, K. and Rao, K. A. (2007). On tests for a normal mean with known coecient of variation. International Statistical Review, 75, 170-182. https://doi.org/10.1111/j.1751-5823.2007.00019.x
- Gleser, L. J. and Healy, J. D. (1976). Estimating the mean of a normal distribution with known coefficient of variation. Journal of the American Statistical Association, 71, 977-981. https://doi.org/10.2307/2286872
- Guo, H. and Pal, N. (2003). On a normal mean with known coefficient of variation. Calcutta Statistical Association Bulletin, 54, 17-30. https://doi.org/10.1177/0008068320030102
- Hinkley, D. V. (1977). Conditional inference about a normal mean with known coefficient of variation. Biometrika, 64, 105-108. https://doi.org/10.1093/biomet/64.1.105
- Kang, S. G., Kim, D. H. and Lee, W. D. (2005). Bayesian analysis for the difference of exponential means. Journal of Korean Data & Information Science Society, 16, 1067-1078.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2006). Bayesian one-sided testing for the ratio of poisson means. Journal of Korean Data & Information Science Society, 17, 619-631.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2007). Bayesian hypothesis testing for homogeneity of the shape parameters in gamma populations. Journal of Korean Data & Information Science Society, 18, 1191-1203.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2007). Bayesian hypothesis testing for the ratio of two quantiles in exponential distributions. Journal of Korean Data & Information Science Society, 18, 833-845.
- O'Hagan, A. (1995). Fractional bayes factors for model comparison (with discussion). Journal of Royal Statistical Society, B, 57, 99-118.
- O'Hagan, A. (1997). Properties of intrinsic and fractional bayes factors. Test, 6, 101-118. https://doi.org/10.1007/BF02564428
- Soofi, E. S. and Gokhale, D. V. (1991). Minimum discrimination information estimator of the mean with known coefficient of variation. Computational Statistics and Data Analysis, 11, 165-177. https://doi.org/10.1016/0167-9473(91)90067-C
- Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. Journal of Royal Statistical Society, B, 44, 377-387.
- Wu, J. and Jiang, G. (2001). Small sample likelihood inference for the ratio of means. Computational Statistics and Data Analysis, 38, 181-190. https://doi.org/10.1016/S0167-9473(01)00025-1