RF 마그네트론 스퍼터링 공정으로 PET 기판 위에 제조한 Ga-doped ZnO 투명전도막의 특성

Properties of Ga-doped ZnO transparent conducting oxide fabricated on PET substrate by RF magnetron sputtering

  • Kim, Jeong-Yeon (Department of Electronic Engineering, Chungju National University) ;
  • Kim, Byeong-Guk (Department of Electronic Engineering, Chungju National University) ;
  • Lee, Yong-Koo (Department of Electronic Engineering, Chungju National University) ;
  • Kim, Jae-Hwa (Department of Electronic Engineering, Chungju National University) ;
  • Woo, Duck-Hyun (Department of Materials Science and Engineering, Chungju National University) ;
  • Kweon, Soon-Yong (Department of Materials Science and Engineering, Chungju National University) ;
  • Lim, Dong-Gun (Department of Electronic Engineering, Chungju National University) ;
  • Park, Jae-Hwan (Department of Electronic Engineering, Chungju National University)
  • 투고 : 2010.01.24
  • 심사 : 2010.03.09
  • 발행 : 2010.03.30

초록

산소 플라즈마 전처리에 의한 PET 기판 위에 Ga이 도핑된 ZnO 투명전극 (GZO)의 특성변화를 고찰하였다. GZO 박막은 RF 마그네트론 스퍼터링 공정에 의해 합성하였으며 GZO 증착 이전에 PET 기판의 표면에너지를 높이고 GZO 박막과의 접촉특성을 향상시키기 위해 산소플라즈마 공정을 적용하였다. 산소 플라즈마 처리공정을 시행함에 따라 GZO 박막의 결정성과 전기적 특성이 향상하였다. RF 파워를 100 W로 하고, 플라즈마 처리시간을 600초로 하였을 때 GZO 박막의 최저 비저항 값인 $1.90{\times}10^{-3}{\Omega}-cm$의 양호한 특성을 확인되었다.

The effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films on PET substrate were studied. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PET substrate and the GZO film, $O_2$ plasma pretreatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the crystallinity increased and the contact angle decreased significantly. When the RF power was 100 W and the treatment time was 600 sec in $O_2$ plasma pretreatment process, the resistivity of GZO films on the PET substrate was $1.90{\times}10^{-3}{\Omega}-cm$.

키워드

참고문헌

  1. T. Minami, "Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes", Thin Solid Films, 516, p.5822-5828 (2008). https://doi.org/10.1016/j.tsf.2007.10.063
  2. G. J. Exarhos, X. D. Zhou, "Discovery-based design of transparent conducting oxide films", Thin Solid Films, 515, p.7025-7052 (2007). https://doi.org/10.1016/j.tsf.2007.03.014
  3. S. C. Gong, I. S. Shin, S. Bang, H. Kim, S. O Ryu, H. Jeon, H. H. Park, C. H. Yu, H. J. Chang, "Dependence of Plasma Treatment of Cross-Linked PVP Insulator on the Electrical Properties of Organic-Inorganic Thin Film Transistors with ZnO Channel Layer", J. Microelectron. Packag. Soc., 16(2), pp.21-25, (2009).
  4. Y. W. Kim and D. K. Choi, "Thin Film Transistor Characteristics with ZnO Channel Grown by RF Magnetron Sputtering", J. Microelectron. Packag. Soc., 14(3), pp.15-20, (2007).
  5. Z. L. Pei, X. B. Zhang, G. P. Zhang, J. Gong, C. Sun, R. F. Huang, L. S. Wen, "Transparent conductive ZnO:Al thin films deposited on flexible substrates prepared by direct current magnetron sputtering", Thin Solid Films, 497, p. 20 (2006). https://doi.org/10.1016/j.tsf.2005.09.110
  6. A. N. Banerjee, C. K. Ghosh, K. K. Chattopadhyay, H. Minoura, K. Sarkar, A. Akiba, A. Kamiyac, T. Endo, "Lowtemperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique", Thin Solid Films, 496, p. 112 (2006). https://doi.org/10.1016/j.tsf.2005.08.258
  7. B. D. Ahn, Y. G. Ko, S. H. Oh, J. H. Song, H. J. Kim, "Effect of oxygen pressure of SiOx buffer layer on the electrical properties of GZO film deposited on PET substrate" Thin Solid Films, 517, p. 6414 (2009) https://doi.org/10.1016/j.tsf.2009.02.057
  8. E. Fortunato, A. Goncalves, V. Assuncao, A. Marques, H. Aguas, L. Pereira, I. Ferreira, R. Martins, "Growth of ZnO:Ga thin films at room temperature on polymeric substrates: thickness dependence" Thin Solid Films, 442, p. 121 (2003). https://doi.org/10.1016/S0040-6090(03)00958-1