RFLP와 DGGE에 따른 해면 Spirastrella abata 공생세균의 다양성 비교

A Comparison of Bacterial Diversity Associated with the Sponge Spirastrella abata Depending on RFLP and DGGE

  • 투고 : 2010.11.29
  • 심사 : 2010.12.29
  • 발행 : 2010.12.31

초록

비배양에 근거한 16S rDNA-DGGE fingerprinting 방법을 적용하여 공생세균 군집구조를 조사하였다. Zobell 배지와 천일염 배지를 사용하여 총 164균주를 선별하였다. 이들 균주로 부터 증폭한 16S rDNA를 제한효소 HaeIII와 MspI을 사용하여 절단한 후 각각의 다른 RFLP 패턴으로 구분하였다. RFLP패턴으로부터 유래한 16S rDNA의 염기서열 분석 결과, 알려진 염기서열들과 95% 이상의 유사도를 나타내었으며 Proteobacteria (Alphaproteobacteria, Gammaproteobacteria), Actinobacteria, Firmicutes, Bacteroidetes의 4개의 문이 나타났으며 우점 군집은 Alphaproteobacteria였다. 해면에서 분리한 total gDNA로 부터 증폭한 16S rDNA의 DGGE 분석 결과 5개의 DGGE band가 확인 되었고, 각각의 band의 염기서열 분석 결과 알려진 염기서열들과 96% 이상의 유사도를 나타내었으며 band로부터 밝혀진 모든 서열들은 배양되지 않은 세균 클론들과 높은 상동성을 나타내었다. DGGE에 의한 공생세균 군집은 Proteobacteria (Alphaproteobacteria, Gammaproteobacteria), Actinobacteria, Spirochetes, Chloroflexi로 4개의 문(phylum)으로 나타났다. Spirastrella abata의 공생세균 군집에 대한 RFLP와 DGGE 적용 결과, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria의 공통 세균 그룹이 발견되었으나 전체적인 공생세균 군집구조는 분석 방법에 따른 차이를 나타내었다.

Culture-dependent RFLP and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Spirastrella abata. A total of 164 bacterial strains associated with the sponge were cultivated using Zobell and Natural sea salt media. PCR amplicons of the 16S rDNA from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rDNA sequences derived from RFLP patterns showed more than 95% similarities compared with known bacterial species, and the isolates belonged to four phyla, Proteobacteria (Alphaproteobacteria, Gammaproteobacteria), Actinobacteria, Firmicutes, and Bacteriodetes, of which Alphaproteobacteria was dominant. DGGE fingerprinting of 16S rDNAs amplified from the sponge- derived total gDNA showed five major DGGE bands, and their sequences showed more than 96% similarities compared with available sequences. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of four phyla, including Proteobacteria (Alphaproteobacteria, Gammaproteobacteria), Actinobacteria, Spirochetes, and Chloroflexi. Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were commonly found in bacteria associated with S. abata by both RFLP and DGGE methods; however, overall bacterial community in the sponge differed depending on the analysis methods.

키워드

참고문헌

  1. Alam, N., B.H. Bae, J. Hong, C.O. Lee, B.A. Shin, K.S. Im, and J.H. Jung. 2001. Additional bioactive Lyso-PAF congeners from the sponge Spirastrella abata. J. Nat. Prod. 64, 533-535. https://doi.org/10.1021/np0005210
  2. Alam, N., W. Wang, J.K. Hong, C.O. Lee, K.S. Im, and J.H. Jung. 2002. Cytotoxic sphingosine 4-sulfates from the sponge Spirastrella abata. J. Nat. Prod. 65, 944-945. https://doi.org/10.1021/np010312v
  3. Cho, H.H. and J.S. Park. 2009. Comparative analysis of the community of culturable bacteria associated with sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP. Kor. J. Microbiol. 45, 155-162.
  4. Cho, H.H., E.J. Sim, and J.S. Park. 2010. Phylogenetic diversity of bacteria associated with the marine sponge, Spirastrella abata and Cinachyrella sp. Kor. J. Microbiol. 46, 177-182.
  5. Enticknap, J.J., M. Kelly, O. Peraud, and R.T. Hill. 2006. Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and devidence for vertical transmission via sponge Larvae. Appl. Environ. Microbiol. 72, 3724-3732. https://doi.org/10.1128/AEM.72.5.3724-3732.2006
  6. Hardoim, C.C., R. Costa, F.V. Araujo, E. Hajdu, R. Peixoto, U. Lins, A.S. Rosado, and J.D. van Elsas. 2009. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl. Environ. Microbiol. 75, 3331-3343. https://doi.org/10.1128/AEM.02101-08
  7. Hentschel, U., J. Hopke, M. Horn, A.B. Friedrich, M. Wagner, J. Hacker, and B.S. Moore. 2002. Molecular evidence for a uniform microbial community in sponge from different oceans. Appl. Environ. Microbiol. 68, 4431-4440. https://doi.org/10.1128/AEM.68.9.4431-4440.2002
  8. Hooper, N.J.A. and R.W.M. van Soest. 2002. Systema Porifera: A guide to the classification of sponges. In N. BouryEsnault and C. Donadey (eds.). Kluwer Academic/Plenum Publisher, New York, USA.
  9. Ko, S.R., S.J. Park, C.Y. Ahn, A. Choi, J.S. Lee, H.S. Kim, B.D. Yoon, and H.M. Oh. 2004. Analysis of microbial communities during cyanobacterial bloom in Daechung Reservoir by DGGE. Kor. J. Microbiol. 40, 205-210.
  10. Levina, E.V., A.I. Kalinovsky, P.V. Andriyashenko, P.S. Dmitrenok, D.L. Aminin, and V.A. Stonik. 2005. Phrygiasterol, a cytotoxic cyclopropane-containing polyhydroxysteroid, and related compounds from the pacific starfish Hippasteria phrygiana. J. Nat. Prod. 68, 1541-1544. https://doi.org/10.1021/np049610t
  11. Li, Z., L. He, and X. Miao. 2007. Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr. Microbiol. 55, 465-472. https://doi.org/10.1007/s00284-007-9035-2
  12. Li, Z.Y., L.M. He, J. Wu, and Q. Jiang. 2006. Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J. Exp. Mar. Biol. Ecol. 329, 75-85. https://doi.org/10.1016/j.jembe.2005.08.014
  13. Li, Z., Y. Hu, Y. liu, Y. Huang, L. He, and X. Miao. 2007. 16S rDNA clone library based bacterial phylogenetic diversity associated with three South China Sea sponges. World J. Microbiol. Biotechnol. 23, 1265-1272. https://doi.org/10.1007/s11274-007-9359-x
  14. Li, Z.Y. and Y. Liu. 2006. Marine sponge Craniella austrialiensis- associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis. Lett. Appl. Microbiol. 43, 410-416. https://doi.org/10.1111/j.1472-765X.2006.01976.x
  15. Mohamed, N.M., V. Rao, M.T. Hamann, M. Kelly, and R.T. Hill. 2008. Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl. Environ. Microbiol. 74, 4133-4143. https://doi.org/10.1128/AEM.00454-08
  16. Muscholl-Silberhorn, A., V. Thiel, and J.F. Ihoff. 2008. Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microbial. Ecol. 55, 94-106. https://doi.org/10.1007/s00248-007-9255-9
  17. Park, J.S. 2010. Bacterial community diversity associated with two marine sponges from the South Pacific Ocean based on 16S rDNA-DGGE analysis. Kor. J. Microbiol. 46, 177-182.
  18. Park, J.S., J.J. Sim, and K.D. An. 2009. Community structure of bacteria associated with two marine sponges from Jeju Island based on 16S rDNA-DGGE profile. Kor. J. Microbiol. 45, 170-176.
  19. Park, S.H., K.K. Kwon, D.S. Lee, and H.K. Lee. 2002. Morphological diversity of marine microorganisms on different isolation media. J. Micorobiol. 40, 161-165.
  20. Radwan, M., A. Hanora, J. Zan, N.M. Mohamed, D.M. Abo-Elamatty, S.H. Abou-El-Ela, and R.T. Hill. 2009. Bacterial community analyses of two Red Sea sponges. Mar. Biotechnol. 12, 350-360.
  21. Ridley, C.P., D.J. Faulkner, and M.G. Haygood. 2005. Investigation of Oscillatoria spongeliae-dominated bacterial communities in four dictyoceratid sponges. Appl. Environ. Microbiol. 71, 7366-7375. https://doi.org/10.1128/AEM.71.11.7366-7375.2005
  22. Salmoun, M., C. Devijver, D. Daloze, J.C. Breakman, R. Gomez, M. de Kluijver, and R.W.M. Van Soest. 2000. New sesquiterpene/ Quinones from two sponges of the genus Hyrtios. J. Nat. Prod. 63, 452-456. https://doi.org/10.1021/np9903346
  23. Shin, B.A., Y.R. Kim, I.S. Lee, C.K. Sung, J.K. Hong, C.J. Sim, K.S. Im, and J.H. Jung. 1999. Lyso-PAF analogues and lysophosphatidylcholines from the marine sponge Spirastrella abata as inhibitors of cholesterol biosyntehsis. J. Nat. Prod. 62, 1554-1557. https://doi.org/10.1021/np990303a
  24. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA 4. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  25. Thiel, V., S. Leininger, R. Schamljohann, F. Brümer, and J. Imhoff. 2007. Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, tetractinomorpha). Microbial. Ecol. 54, 101-111. https://doi.org/10.1007/s00248-006-9177-y
  26. Thiel, V., S.C. Neulinger, T. Saufenberger, R. Schmaljohann, and J.F. Imhoff. 2007. Spatial distribution of sponge-associated bacteria in the Medittanean sponge Tethya aurantium. FEMS Microbiol. Ecol. 59, 47-63. https://doi.org/10.1111/j.1574-6941.2006.00217.x
  27. Thomson, C., M. Horn, W. Wagner, U. Hentschel, and P. Proksch. 2003. Monitoring microbial diversity and natural products profiles of the sponge Aplysina cavericola following transplantation. Mar. Biol. 142, 685-692. https://doi.org/10.1007/s00227-002-1000-9
  28. Webster, N.S., A.P. Negri, M.M. Munro, and C.N. Battershill. 2004. Diverse microbial communities inhabit Antarctic sponges. Environ. Microbiol. 6, 288-300. https://doi.org/10.1111/j.1462-2920.2004.00570.x
  29. Zhang, H., Y.K. Lee, W. Zhang, and H.K. Lee. 2006. Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie van Leeuwenhoek 90, 159-169. https://doi.org/10.1007/s10482-006-9070-1