DOI QR코드

DOI QR Code

Analysis of Mechanical and Ultrasonic Properties for the Evaluation of Material Degradation in Modified 9Cr-1Mo Steel

개량형 9Cr-1Mo 강의 열화도 평가를 위한 기계적 성질 및 초음파 특성 분석

  • Hyun, Y.K. (Industrial Technology Support Division, Korea Institute of Materials Science) ;
  • Won, S.H. (Industrial Technology Support Division, Korea Institute of Materials Science) ;
  • Lee, S.H. (Industrial Technology Support Division, Korea Institute of Materials Science) ;
  • Son, Y.H. (Industrial Technology Support Division, Korea Institute of Materials Science) ;
  • Lee, J.H. (Industrial Technology Support Division, Korea Institute of Materials Science) ;
  • Kim, I.B. (School of Materials Science and Engineering, Pusan National University)
  • 현양기 (한국기계연구원부설 재료연구소 산업기술지원본부) ;
  • 원순호 (한국기계연구원부설 재료연구소 산업기술지원본부) ;
  • 이상훈 (한국기계연구원부설 재료연구소 산업기술지원본부) ;
  • 손영호 (한국기계연구원부설 재료연구소 산업기술지원본부) ;
  • 이재훈 (한국기계연구원부설 재료연구소 산업기술지원본부) ;
  • 김인배 (부산대학교 재료공학부)
  • Received : 2010.06.15
  • Accepted : 2010.06.29
  • Published : 2010.07.30

Abstract

Modified 9Cr-1Mo steels possess excellent high-temperature mechanical properties and are widely used in energy conversion industries. However, in-service materials degradation, such as softening, carbide-induced embrittlement, temper embrittlement, etc., can take place during long-term operation. Evolution of microstructure due to service exposure to high temperature has a strong effect on the performance of heat resistant steels. In case of modified 9Cr-1Mo steels, precipitation of $Fe_2Mo$-type laves phases and coarsening of $M_{23}C_6$-type carbides are the primary cause of degradation of mechanical properties such as toughness, hardness, tensile strength and creep resistance. This study was aimed at finding reliable parameter for assessing the integrity of modified 9Cr-1Mo steels. Characteristic parameters were attained between mechanical and ultrasonic properties.

Keywords

References

  1. C. R. Brinkman, B. and Gieseke, P. J. Maziasz : TMS, (1993) 107.
  2. R. L. Klueh and A. T. Nelson : J. Nucl. Mater., 371 (2007) 37. https://doi.org/10.1016/j.jnucmat.2007.05.005
  3. K. Hamada, K. Tokuno, Y. Tomita, H. Mabuchi, and K. Okamoto : ISIJ Int., 35 (1995) 86. https://doi.org/10.2355/isijinternational.35.86
  4. K. Sawada, M. Takeda, K. Maruyama, R. Komine, and Y. Nagae : ISIJ Int., 84 (1999) 581.
  5. H. Kushima, K. Kimura, and F. Abe : ISIJ Int., 85 (1999) 841.
  6. H. Okamura, et al. : Nucl. Eng. Des., 193 (1999) 243. https://doi.org/10.1016/S0029-5493(99)00181-8
  7. E. P. Papadakis : Rev. Sci. Instrum., 47 (1976) 806. https://doi.org/10.1063/1.1134757
  8. W. C. Oliver and G. M. Pharr. : J. Mater. Res., 7 (1992) 1564. https://doi.org/10.1557/JMR.1992.1564
  9. ISO 14577-2, Instrumented indentation test for hardness and materials parameters (2002).
  10. ASTM A370-09ae1, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM, Philadelphia, PA., (2009).
  11. Y. K. Hyun, J. D. Lee, and I. B. Kim : Key Eng. Mat., 270 (2004) 1206.
  12. G. Sposito, et al. : NDT&E Int., (2010). doi:10.1016/j.ndteint2010.05.012.
  13. J. E. Lee, Y. C. Kim, J. P. Ahn, and H. S. Kim : Acta Mater. 53 (2005) 129. https://doi.org/10.1016/j.actamat.2004.09.010
  14. M. Vasudevan, et al. : Scr. Metall. Mater. 30 (1994) 1479. https://doi.org/10.1016/0956-716X(94)90249-6
  15. P. Palanichamy, et al. : NDT&E Int. 33 (2000) 253. https://doi.org/10.1016/S0963-8695(99)00047-X
  16. M. Hattestrand, M. Schwind, and H.O. Andren : Mater. Sci. Eng. A 250 (1998) 27.
  17. S. Saroja, et al. : Acta Metall. Mater. 43 (1995) 2985. https://doi.org/10.1016/0956-7151(95)00022-N
  18. T. Morishita, and M. Hirao : Int. Solid Struct. 34 (1997) 1169. https://doi.org/10.1016/S0020-7683(96)00110-2
  19. H. Jeong, and D. H. Kim : Mater. Sci. Eng. A 337 (2002) 82.
  20. R. Truell, C. Elbaum and B. B. Chick : Ultrasonic Methods in Solid State Physics, Academic Press, Inc. (1969).
  21. I. N. Sneddon : Int. J. Eng. Sci., 3 (1965) 47. https://doi.org/10.1016/0020-7225(65)90019-4