DOI QR코드

DOI QR Code

Characterization of Bacterial Structures in a Two-Stage Moving-Bed Biofilm Reactor (MBBR) During Nitrification of the Landfill Leachate

  • Ciesielski, Slawomir (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn) ;
  • Kulikowska, Dorota (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn) ;
  • Kaczowka, Ewelina (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn) ;
  • Kowal, Przemyslaw (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
  • 투고 : 2010.01.18
  • 심사 : 2010.03.31
  • 발행 : 2010.07.28

초록

Differences in DNA banding patterns, obtained by ribosomal intergenic spacer analysis (RISA), and nitrification were followed in a moving-bed biofilm reactor (MBBR) receiving municipal landfill leachate. Complete nitrification (>99%) to nitrate was obtained in the two-stage MBBR system with an ammonium load of 1.09 g N-$NH_4/m^2{\cdot}d$. Increasing the ammonium load to 2.03 g N-$NH_4/m^2{\cdot}d$or more caused a decline in process efficiency to 70-86%. Moreover, at the highest ammonium load (3.76 g N-$NH_4/m^2{\cdot}d$), nitrite was the predominant product of nitrification. Community succession was evident in both compartments in response to changes in ammonium load. Nonmetric multidimensional scaling (NMDS) supported by similarity analysis (ANOSIM) showed that microbial biofilm communities differed between compartments. The microbial biofilm was composed mainly of ammonia-oxidizing bacteria (AOB), with Nitrosomonas europeae and N. eutropha being most abundant. These results suggest that high ammonium concentrations suit particular AOB strains.

키워드

참고문헌

  1. Aakra, A., J. B. Utaker, and I. F. Nes. 1999. RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: A phylogenetic approach. Int. J. Syst. Bacteriol. 49: 123-130. https://doi.org/10.1099/00207713-49-1-123
  2. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  3. Chiemchaisri, C., W. Chiemchaisri, J. Junsod, S. Threedeach, and P. N. Wicranarachchi. 2009. Leachate treatment and greenhouse gas emission in subsurface horizontal flow constructed wetland. Bioresour. Technol. 100: 3808-3814. https://doi.org/10.1016/j.biortech.2008.12.028
  4. Ciesielski, S., A. Cydzik-Kwiatkowska, and J. Turek. 2007. Molecular analysis of bacterial community diversity in sequencing batch reactor (SBR) operating in autotrophic conditions. Pol. J. Microbiol. 56: 45-51.
  5. Clarke, K. R. 1993. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 18: 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
  6. Clarke, K. R. and R. M. Warwick. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Primer-E, Plymouth.
  7. Dionisi, H. M., A. C. Layton, G. Harms, I. R. Gregory, K. G. Robinson, and G. S. Sayler. 2002. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 68: 245-253. https://doi.org/10.1128/AEM.68.1.245-253.2002
  8. Du, Y., S. Chen, and D. Z. Sun. 2007. Short-cut nitrification of landfill leachate by aerobic moving-bed biofilm reactor. Environ. Sci. 28: 1039-1043.
  9. Ganigue, R., H. Lopez, M. D. Balaguer, and J. Colprim. 2007. Partial ammonium oxidation to nitrite of high ammonium content urban landfill leachates. Water Res. 41: 3317-3326. https://doi.org/10.1016/j.watres.2007.04.027
  10. Gieseke, A., L. Bjerrum, M. Wagner, and R. Amann. 2003. Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm. Environ. Microbiol. 5: 355-369. https://doi.org/10.1046/j.1462-2920.2003.00423.x
  11. Gurtler, V. and V. A. Stanisich. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142: 3-16. https://doi.org/10.1099/13500872-142-1-3
  12. Harms, G., A. Layton, H. Dionisi, I. Gregory, V. Garret, S. Hawkins, K. Robinson, and B. Sayler. 2003 Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37: 343-351. https://doi.org/10.1021/es0257164
  13. Hanaki, K., W. Chalermraj, and O. Sinichiro. 1990. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Res. 24: 297-302. https://doi.org/10.1016/0043-1354(90)90004-P
  14. Jensen, M. A., J. A. Webster, and N. Straus. 1993. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 59: 945-952.
  15. Joo, S. H., D. J. Kim, I. K. Yoo, K. Park, and G. C. Cha. 2000. Partial nitrification in an upflow biological aerated filter by $O_2$ limitation. Biotechnol. Lett. 22: 937-940. https://doi.org/10.1023/A:1005646632504
  16. Kalyuzhnyi, S. V. and M. A. Gladchenko. 2004. Sequenced anaerobic-aerobic treatment of high strength strong nitrogenous landfill leachate. Water Sci. Technol. 49: 301-308.
  17. Konopka, A., M. Carrero-Colon, and C. H. Nakatsu. 2007. Community dynamics and heterogeneities in mixed bacterial communities subjected to nutrient periodicities. Environ. Microbiol. 9: 1584-1590. https://doi.org/10.1111/j.1462-2920.2007.01326.x
  18. Kostman, J. R., T. D. Edlind, J. J. LiPuma, and T. L. Stull. 1992. Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping. J. Clin. Microbiol. 30: 2084-2087.
  19. Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245. https://doi.org/10.1093/bioinformatics/17.12.1244
  20. Laitinen, N., A. Luonsi, and J. Vilen. 2006. Landfill leachate treatment with sequencing batch reactor and membrane bioreactor. Desalination 191: 86-91. https://doi.org/10.1016/j.desal.2005.08.012
  21. Leblond-Bourget, N., H. Philippe, I. Mangin, and B. Decaris. 1996. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. Int. J. System. Bacteriol. 46: 102-111. https://doi.org/10.1099/00207713-46-1-102
  22. Mota, C., M. A. Head, J. A. Ridenoure, J. J. Cheng, and F. L. de los Reyes. 2005. Effects of aeration cycles on nitrifying bacterial populations and nitrogen removal in intermittently aerated reactors. Appl. Environ. Microbiol. 71: 8565-8572. https://doi.org/10.1128/AEM.71.12.8565-8572.2005
  23. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  24. Normand, P., C. Ponsonnet, X. Nesme, M. Neyra, and P. Simonet. 1996. ITS analysis of prokaryotes. In Akkermans, A. D. L., J. D. van Elsas, and F. J. de Bruijn (eds.). Molecular Microbial Ecology Manual Kluwer Academic Publishers, Dordrecht.
  25. Odegaard, H., B. Rusten, and T. Westrum. 1994. A new moving bed reactor - applications and results. Water Sci. Technol. 29: 157-165.
  26. Osborn, A. M., R. B. Moore, and K. N. Timmis. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2: 39-50. https://doi.org/10.1046/j.1462-2920.2000.00081.x
  27. Otawa, K., R. Asano, Y. Ohba, T. Sasaki, E. Kawamura, F. Koyama, S. Nakamura, and Y. Nakai. 2006. Molecular analysis of ammonia-oxidizing bacteria community in intermittent aeration sequencing batch reactors used for animal wastewater treatment. Environ. Microbiol. 8: 1985-1996. https://doi.org/10.1111/j.1462-2920.2006.01078.x
  28. Renou, S., J. G. Givaudan, S. Poulain, F. Dirassouyan, and P. Moulin. 2008. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 150: 468-493. https://doi.org/10.1016/j.jhazmat.2007.09.077
  29. Rowan, A. K., J. R. Snapeb, D. Fearnsidec, M. R. Barerd, T. P. Curtise, and I. M. Head. 2003. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol. 43: 195-206. https://doi.org/10.1111/j.1574-6941.2003.tb01059.x
  30. Shannon, C. E. and W. Weaver. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana.
  31. Surmacz-Gorska, J., K. Miksch, and M. Kita. 2000. Mo liwo ci podczyszczania odciekow z wysypisk metodami biologicznymi. Arch. Environ. Prot. 3: 43-54.
  32. Qu, Y. Y., J. T. Zhou, J. Wang, L. L. Xing, N. Jiang, M. Gou, and M. Salah Uddin. 2009. Population dynamics in bioaugmented membrane bioreactor for treatment of bromoamine acid wastewater. Bioresour. Technol. 100: 244-248. https://doi.org/10.1016/j.biortech.2008.06.023
  33. Tawfik, A., H. Temmink, G. Zeeman, and B. Klapwijk. 2006. Sewage treatment in a rotating biological contactor (RBC) system. Water Air Soil Pollut. 126: 193-206.
  34. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  35. Tokutomi, T. 2004. Operation of a nitrite-type airlift reactor at low DO concentration. Water Sci. Technol. 49: 81-88.
  36. Wang, R.-C., X.-H. Wen, and Q. Yi. 2005. Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Proc. Biochem. 40: 2992-3001. https://doi.org/10.1016/j.procbio.2005.02.024
  37. Wyffels, S., P. Boeckx, K. Pynaert, W. Verstraete, and O. Van Cleemput. 2003. Sustained nitrite accumulation in a membrane-assisted bioreactor (MBR) for the treatment of ammonium-rich wastewater. J. Chem. Technol. Biotechnol. 78: 412-419. https://doi.org/10.1002/jctb.808
  38. Yu, Z. and W. W. Mohn. 2001. Bacterial diversity and community structure in an aerated lagoon revealed by ribosomal intergenic spacer analyses and 16S ribosomal DNA sequencing. Appl. Environ. Microbiol. 67: 1565-1574. https://doi.org/10.1128/AEM.67.4.1565-1574.2001
  39. Yunxia, Z., Y. Xu, M. Jia, J. Zhou, S. Yuan, J. Zhang, and Z-P. Zhang. 2009. Stability of partial nitrification and microbial population dynamics in a bioaugmented membrane bioreactor. J. Microbiol. Biotechnol. 19: 1656-1664.
  40. Zhang, B., B. Sun, M. Ji, and H. Liu. 2009. Population dynamic succession and quantification of ammonia-oxidizing bacteria in a membrane bioreactor treating municipal wastewater. J. Hazard. Mat. 165: 796-803. https://doi.org/10.1016/j.jhazmat.2008.10.116

피인용 문헌

  1. Comparison of Ammonia-Oxidizing Bacterial Community Structure in Membrane-Assisted Bioreactors Using PCR-DGGE and FISH vol.22, pp.8, 2010, https://doi.org/10.4014/jmb.1201.01014
  2. Effect of Different OperationalConditions on BiofilmDevelopment, Nitrification, and Nitrifying Microbial Population inMoving-Bed Biofilm Reactors vol.46, pp.3, 2010, https://doi.org/10.1021/es203356z
  3. Evaluating the effect of biofilm thickness on nitrification in moving bed biofilm reactors vol.37, pp.6, 2010, https://doi.org/10.1080/09593330.2015.1080308
  4. Bacterial community structure in rotating biological contactor treating coke wastewater in relation to medium composition vol.26, pp.19, 2010, https://doi.org/10.1007/s11356-019-05087-0
  5. Partial nitritation at elevated loading rates: design curves and biofilm characteristics vol.42, pp.11, 2019, https://doi.org/10.1007/s00449-019-02177-8