DOI QR코드

DOI QR Code

Evaluation of Various PCR Assays for Detection of Emetic-Toxin-Producing Bacillus cereus

  • Kim, Jung-Beom (Division of Health Research and Planning, Gyeonggi-do Research Institute of Health and Environment) ;
  • Kim, Jae-Myung (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Park, Yong-Bae (Division of Health Research and Planning, Gyeonggi-do Research Institute of Health and Environment) ;
  • Han, Jeong-A (Food Microbiology Division, Korea Food and Drug Administration) ;
  • Lee, Soon-Ho (Food Microbiology Division, Korea Food and Drug Administration) ;
  • Kwak, Hyo-Sun (Food Microbiology Division, Korea Food and Drug Administration) ;
  • Hwang, In-Gyun (Food Microbiology Division, Korea Food and Drug Administration) ;
  • Yoon, Mi-Hye (Division of Health Research and Planning, Gyeonggi-do Research Institute of Health and Environment) ;
  • Lee, Jong-Bok (Division of Health Research and Planning, Gyeonggi-do Research Institute of Health and Environment) ;
  • Oh, Deog-Hwan (School of Bioscience and Biotechnology, Kangwon National University)
  • 투고 : 2009.12.09
  • 심사 : 2010.02.26
  • 발행 : 2010.07.28

초록

Because conventional methods for detecting emetic-toxin-producing B. cereus are laborious and costly, various PCR assays, which are easy and cheap, have recently been reported. Therefore, this study estimated and compared the ability of various PCR assays to detect emetic-toxin-producing B. cereus strains isolated in Korea. The PCR assays were performed on 160 B. cereus strains, including 40 emetic-toxin-producing strains. Although the species-specific PCR assays were all shown to be highly specific, the sensitivities varied greatly. The accuracies of the primers were 97.5% (CER), 95.6% (EM1), 96.3% (RE234), 89.4% (CES), and 83.1% (Ces3R/CESR2). Moreover, the CER primer had a higher sensitivity (100%) than all the other primers tested, and a specificity of 96.7%. Thus, the CER primer was shown to be the most effective for screening the emetic-toxin-producing B. cereus strains tested in this study. However, the ability of these PCR assays to identify emetic-toxin-producing B. cereus should also be confirmed using other methods.

키워드

참고문헌

  1. Agata, N., M. Mori, M. Ohta, S. Suwan, I. Ohtani, and M. Isobe. 1994. A novel duodeca-depsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in Hep-2 cells. FEMS Microbiol. Lett. 121: 31-34.
  2. Andersson, M. A., R. Mikkola, J. Helin, M. C. Andersson, and M. Salkinoja-Salonen. 1998. A novel sensitive bioassay for detection of Bacillus cereus emetic toxin and related depsipeptide ionphores. Appl. Environ. Microbiol. 64:1338-1343.
  3. Arnesen, L. P. S., A. Fagerlund, and P. E. Granum. 2008. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606. https://doi.org/10.1111/j.1574-6976.2008.00112.x
  4. Bartoszewicz, M., B. M. Hansen, and I. Swiecicka. 2008. The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Food Microbiol. 25: 588-596. https://doi.org/10.1016/j.fm.2008.02.001
  5. Day, T. L., S. R. Tatani, S. Notermans, and R. W. Bennett. 1994. A comparison of ELISA and RPLA for detection of Bacillus cereus diarrhoeal enterotoxin. J. Appl. Bacteriol. 77: 3-13.
  6. Dietrich, R., M. Moravek, C. Burk, P. E. Granum, and E. Märtlbauer. 2005. Production and characterization of antibodies against each of the three subunits of the Bacillus cereus nonhemolytic enterotoxin complex. Appl. Environ. Microbiol. 71: 8214-8220. https://doi.org/10.1128/AEM.71.12.8214-8220.2005
  7. Duc, L. H., T. C. Ding, N. A. Logan, A. D. Sutherland, J. Taylor, and S. M. Cutting. 2005. Cases of emesis associated with bacterial contamination of an infant breakfast cereal product. Int. J. Food Microbiol. 102: 245-251. https://doi.org/10.1016/j.ijfoodmicro.2004.11.022
  8. Ehling-Schulz, M., M. Fricker, and S. Scherer. 2004. Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiol. Lett. 232: 189-195. https://doi.org/10.1016/S0378-1097(04)00066-7
  9. Ehling-Schulz, M., N. Vukov, A. Schulz, R. Shaheen, and M. Andersson. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105-113. https://doi.org/10.1128/AEM.71.1.105-113.2005
  10. Granum, P. E. 1990. Clostridium perfringens toxins involved in food poisoning. Int. J. Food Microbiol. 10: 101-111. https://doi.org/10.1016/0168-1605(90)90059-E
  11. Greenhalgh, T. 1997. How to read a paper: Papers that report diagnostic or screening tests. Br. Med. J. 315: 540-543. https://doi.org/10.1136/bmj.315.7107.540
  12. Haggblom, M. M., C. Apetroaie, M. A. Andersson, and M. S. Salkinoja-Salonen. 2002. Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl. Environ. Microbiol. 68: 2479-2483. https://doi.org/10.1128/AEM.68.5.2479-2483.2002
  13. Horwood, P. F., G. W. Burgess, and H. J. Oakey. 2004. Evidence for non-ribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus. FEMS Microbiol. Lett. 236: 319-324. https://doi.org/10.1111/j.1574-6968.2004.tb09664.x
  14. Jaaskelainen, E. L., V. Teplova, M. A. Adersson, L. C. Andersson, P. Tammela, M. C. Andersson, et al. 2003. In vitro assay for human toxicity of cereulide, the emetic mitochondrial toxin produced by food poisoning Bacillus cereus. Toxicol. In Vitro 17: 737-744. https://doi.org/10.1016/S0887-2333(03)00096-1
  15. Kawamura-Sato, K., Y. Hirama, N. Agata, H. Ito, K. Torii, A. Takeno, T. Hasegawa, Y. Shimomura, and M. Ohta. 2005. Quantitative analysis of cereulide, an emetic toxin of Bacillus cereus, by using rat liver mitochondria. Microbiol. Immunol. 49: 25-30.
  16. Kim, J. H., E. G. Lim, H. C. Jang, J. Y. Park, S. J. Lee, M. S. Park, G. B. Chli, and B. K. Lee. 2009. A case of emetic toxin producing Bacillus cereus strains isolated from outbreak. Korean J. Clin. Microbiol. 12: 48-52. https://doi.org/10.5145/KJCM.2009.12.1.48
  17. Koneman, E., S. D. Allen, W. M. Janda, P. C. Schreckenberger, and W. C. Winn Jr. 1997. The aerobic Gram-positive bacilli, pp. 651-708. In: Color Atlas and Textbook of Diagnostic Microbiology, 5th Ed. Lippincott, New York.
  18. Kramer, J. M. and R. J. Gilbert. 1992. Bacillus cereus gastroenteritis, pp. 119-153. In A. T. Tu (ed.). Food Poisoning - Handbook of Natural Toxins, Vol. 7. Marcel Dekker, Inc., New York.
  19. Kramer, J. M. and R. J. Gilbert. 1989. Bacillus cereus and other Bacillus species, pp. 21-70. In M. P. Doyle (ed.). Foodborne Bacterial Pathogens. Marcel Dekker, New York.
  20. Lund, T., M. L. De Buyser, and P. E. Granum. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254-261. https://doi.org/10.1046/j.1365-2958.2000.02147.x
  21. McKillip, J. L. 2000. Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp. Antonie van Leeuwenhoek 77: 393-399. https://doi.org/10.1023/A:1002706906154
  22. Mikkola, R., N.-E. L. Saris, P. A. Grigoriev, M. A. Andersson, and M. S. Salkinoja-Salonen. 1999. Ionphoretic properties and mitochondrial effect of cereulide. Eur. J. Biochem. 262: 112-117.
  23. Nakano, S., H. Maeshima, A. Matsumura, K. Ohno, S. Ueda, Y. Kuwabara, and T. Yamada. 2004. A PCR assay based on a sequence-characterized amplified region marker for detection of emetic Bacillus cereus. J. Food Prot. 67: 1694-1701.
  24. Pruss, B. M., R. Dietrich, B. Nibler, E. Martlbauer, and S. Scherer. 1999. The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl. Environ. Microbiol. 65: 5436-5442.
  25. Schoeni, J. L. and A. C. L. Wong. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68: 636-648.
  26. Seong, S. J., K. G. Lee, S. J. Lee, and K. W. Hong. 2008. Toxin gene profiling of Bacillus cereus food isolates by PCR. J. Korean Soc. Appl. Biol. Chem. 54: 263-268.
  27. Sergeev, N., M. Distler, M. Vargas, V. Chizhikov, K. E. Herold, and A. Rasooly. 2005. Microarray analysis of Bacillus cereus group virulence factors. J. Microbiol. Meth. 65: 488-502.
  28. Shinagawa, K., Y. Ueno, D. Hu, S. Ueda, and S. Sugii. 1996. Mouse lethal activity of a HEp-2 vacuolation factor, cereulide, produced by Bacillus cereus isolated from vomiting-type food poisoning. J. Vet. Med. Sci. 58: 1027-1029. https://doi.org/10.1292/jvms.58.10_1027
  29. Toh, M., M. C. Moffitt, L. Henrichsen, M. Raftery, K. Barrow, J. M. Cox, C. P. Marquis, and B. A. Neilan. 2004. Cereulide, the emetic toxin of Bacillus cereus, is putatively a product of nonribosomal peptide synthesis. J. Appl. Microbiol. 97: 992-1000. https://doi.org/10.1111/j.1365-2672.2004.02381.x
  30. Weber, T. and M. A. Marahiel. 2001. Exploring the domain structure of modular nonribosomal peptide synthetases. Structure 9: R3-R9. https://doi.org/10.1016/S0969-2126(00)00560-8

피인용 문헌

  1. Follow-up of the Bacillus cereus emetic toxin production in penne pasta under household conditions using liquid chromatography coupled with mass spectrometry vol.28, pp.5, 2011, https://doi.org/10.1016/j.fm.2011.02.014
  2. 보육시설 유아 사용 수건의 미생물 분포 및 독소 특성 vol.28, pp.2, 2010, https://doi.org/10.13103/jfhs.2013.28.2.138
  3. 보육시설 유아 사용 칫솔의 식중독 미생물 분포 및 독소 유전자 vol.30, pp.3, 2010, https://doi.org/10.13103/jfhs.2015.30.3.242
  4. Isolation and identification of false positive and false negative strains on coliform dry rehydratable film vol.26, pp.3, 2010, https://doi.org/10.11002/kjfp.2019.26.3.330
  5. Enterotoxin and Emetic Toxin Genes Profiles and Genetic Diversity of Bacillus cereus Isolated from Food, Environmental and Clinical Samples in Serbia vol.70, pp.2, 2010, https://doi.org/10.2478/acve-2020-0013