• Title/Summary/Keyword: cereulide

Search Result 5, Processing Time 0.015 seconds

Detection of Emetic Bacillus cereus from Ready-to-eat Foods in Markets and its Production of Cereulide under Simulated Conditions

  • Kim, Heesun;Chang, Hyeja
    • Journal of the FoodService Safety
    • /
    • v.1 no.1
    • /
    • pp.9-18
    • /
    • 2020
  • B. cereus-produced cereulide as an emetic toxin is commonly isolated in starch-based cooked foods. This study examined the prevalence of B. cereus from ready-to-eat foods in markets by polymerase chain reaction analysis and determined the relationship between the level of B. cereus and the quantity of cereulide in the sample after different storage times and temperatures. The prevalence of general B. cereus in 43 starch foods was 32.6%, and the level of B. cereus ranged from 0.5 to 1.95 log cfu/g, meeting the Korea Food Code Specifications of 3 log CFU/g of B. cereus. No samples revealed emetic B. cereus. Fried rice samples were inoculated with a cereulide-producing reference strain, B. cereus NCCP 14796, to determine the level of B. cereus and the quantity of cereulide in the samples after storage for 0, 4, 6, 8, 20, 24, 30, 48, 72, and 96 h at 7, 25, 35, and 57℃. The average levels of B. cereus at 7, 25, 35, and 57℃ were 4.38, 7.31, 7.88, and 3.82 log cfu/g, and the levels of cereulide were 150.41, 1680.70, 2652.65, and 77.83 ㎍/mL, respectively, showing a significant difference according to the incubation time (P<0.05) and temperature (P<0.001).

A Multiplex PCR Assay for the Detection and Differentiation of Enterotoxin-producing and Emetic Toxin-producing Bacillus cereus Strains

  • Lee, Dae-Sung;Kim, Keun-Sung;Kwon, Ki-Sung;Hong, Kwang-Won
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.761-765
    • /
    • 2008
  • Bacillus cereus causes two different types of food poisoning syndromes: diarrhea and emesis. The diarrheal syndrome is attributed to various enterotoxins, including nonhemolytic enterotoxin, hemolytic enterotoxin, and enterotoxin-T, whereas the emetic syndrome is caused by the dodecadepsipeptide toxin cereulide. A multiplex polymerase chain reaction (PCR) assay was developed to rapidly detect and identify B. cereus strains. Three primer pairs specific to regions within genes encoding nonhemolytic enterotoxin (nheA), molecular chaperonin (groEL), and cereulide synthetase (ces) were used to identify and differentiate between the enterotoxin-producing and emetic toxin-producing B. cereus strains. The cereulide-producing emetic B. cereus showed 3 PCR products of 325, 405, and 685 bp for the groEL, ces, and nheA genes, respectively, whereas the enterotoxin-producing B. cereus showed 2 PCR products without a ces gene specific DNA fragment. Specific amplifications and differentiations by multiplex PCR assay were obtained using 62 B. cereus strains and 13 strains' of other bacterial species. The detection limit of this assay for enterotoxin-producing strain and emetic toxin-producing strain from pure cultures were $2.4{\times}10^1$ and $6.0{\times}10^2\;CFU/tube$, respectively. These results suggest that our multiplex PCR method may be useful for the rapid detection and differentiation of B. cereus strains in foods.

Toxin Gene Profiling of Bacillus cereus Food Isolates by PCR

  • Seong, Seon-Je;Lim, Ji-Su;Lee, Kwang-Geun;Lee, Seung-Ju;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.263-268
    • /
    • 2008
  • Seventy-one Bacillus cereus strains (12 references and 59 food isolates) were analyzed for the occurrence of five different enterotoxin genes (nheABC, hblCDA, entFM, cytK, and bceT) and one emetic toxin cereulide synthetase gene (ces) by PCR (polymerase chain reaction). PCR analysis revealed eight toxigenic patterns in all B. cereus strains tested; they all carried both entFM and nheABC. The presence of hblCDA, cytK, and bceT varied according to the enterotoxin-producing strains, among which hblCDA was the least frequently detected in the food-isolated strains. Only five B. cereus strains harbored ces, associated with the emetic type of food poisoning; however, these strains were devoid of hblCDA, cytK, and bceT.

Evaluation of Various PCR Assays for Detection of Emetic-Toxin-Producing Bacillus cereus

  • Kim, Jung-Beom;Kim, Jae-Myung;Park, Yong-Bae;Han, Jeong-A;Lee, Soon-Ho;Kwak, Hyo-Sun;Hwang, In-Gyun;Yoon, Mi-Hye;Lee, Jong-Bok;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1107-1113
    • /
    • 2010
  • Because conventional methods for detecting emetic-toxin-producing B. cereus are laborious and costly, various PCR assays, which are easy and cheap, have recently been reported. Therefore, this study estimated and compared the ability of various PCR assays to detect emetic-toxin-producing B. cereus strains isolated in Korea. The PCR assays were performed on 160 B. cereus strains, including 40 emetic-toxin-producing strains. Although the species-specific PCR assays were all shown to be highly specific, the sensitivities varied greatly. The accuracies of the primers were 97.5% (CER), 95.6% (EM1), 96.3% (RE234), 89.4% (CES), and 83.1% (Ces3R/CESR2). Moreover, the CER primer had a higher sensitivity (100%) than all the other primers tested, and a specificity of 96.7%. Thus, the CER primer was shown to be the most effective for screening the emetic-toxin-producing B. cereus strains tested in this study. However, the ability of these PCR assays to identify emetic-toxin-producing B. cereus should also be confirmed using other methods.

Characterization of Bacillus licheniformis SCK A08 with Antagonistic Property Against Bacillus cereus and Degrading Capacity of Biogenic Amines (Bacillus cereus에 대한 길항적 저해 작용과 biogenic amines 분해 능력을 지닌 Bacillus licheniformis SCK A08 균의 특성)

  • Lee, Eon Sil;Kim, Yong Sang;Ryu, Myeong Seon;Jeong, Do Yeon;Uhm, Tai Boong;Cho, Sung Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.1
    • /
    • pp.40-46
    • /
    • 2014
  • We have screened Bacillus strains suitable for the fermentation of soybean products with respect to the control of Bacillus cereus and the reduction of biogenic amines. Of 26 isolates, a strain named as the SCK A08 carried antimicrobial activity against B. cereus and Staphylococcus aureus, major food poisoning species in soybean products. PCR analysis revealed that the SCK A08 strain did not contain genes for Bacillus cereus toxins including nonhemolytic enterotoxin, hemolytic enterotoxin, cytotoxin K, cereulide and certrax. The SCK A08 strain could degrade histamine, tyramine, putrescine, and cadaverine by 67.41%, 76.59%, 57.32%, and 50.69%, respectively, during fermentation in cooked soybeans containing 0.5% (w/w) of each biogenic amine. The morphological and biochemical properties and phylogenetic relationships based on 16S rRNA gene sequences indicated that the isolate was most closely related to Bacillus licheniformis. Use of the strain SCK A08 would be a potential measure to overcome two hygienic problems that were frequently faced during manufacture of traditionally fermented soybean products.