DOI QR코드

DOI QR Code

Effect of gcl, glcB, and aceA Disruption on Glyoxylate Conversion by Pseudomonas putida JM37

  • Li, Xuan Zhong (School of Biotechnology and Biomolecular Sciences, The University of New South Wales) ;
  • Klebensberger, Janosch (School of Biotechnology and Biomolecular Sciences, The University of New South Wales) ;
  • Rosche, Bettina (School of Biotechnology and Biomolecular Sciences, The University of New South Wales)
  • Received : 2009.12.03
  • Accepted : 2010.03.03
  • Published : 2010.06.28

Abstract

Pseudomonas putida JM37 metabolized glyoxylate at a specific rate of 55 g/g dry biomass/day. In order to investigate their role, three genes encoding enzymes that are potentially involved in the conversion of glyoxylate were disrupted; namely, tartronate semialdehyde synthase (gcl), malate synthase (glcB), and isocitrate lyase (aceA). Strains with transposon insertion in either of these genes were isolated from a 50,000 clone library employing a PCR-guided enrichment strategy. In addition, all three double mutants were constructed via targeted insertion of a knock-out plasmid. Neither mutation of gcl, glcB, and aceA nor any of the respective double mutations influenced glyoxylic acid conversion, indicating that P. putida JM37 may possess other enzymes and pathways for glyoxylate metabolism.

Keywords

References

  1. Bailey, E. and R. P. Hullin. 1966. The metabolism of glyoxylate by cell-free extracts of Pseudomonas sp. Biochem. J. 101: 755-763. https://doi.org/10.1042/bj1010755
  2. Blackmore, M. A. and J. R. Quayle. 1970. Microbial growth on oxalate by a route not involving glyoxylate carboligase. Biochem. J. 118: 53-59. https://doi.org/10.1042/bj1180053
  3. dos Santos, V., S. Heim, E. R. B. Moore, M. Stratz, and K. N. Timmis. 2004. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ. Microbiol. 6: 1264-1286. https://doi.org/10.1111/j.1462-2920.2004.00734.x
  4. Gavagan, J. E., S. K. Fager, J. E. Seip, M. S. Payne, D. L. Anton, and R. Dicosimo. 1995. Glyoxylic-acid production using microbial transformant catalysts. J. Org. Chem. 60: 3957-3963. https://doi.org/10.1021/jo00118a009
  5. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
  6. Isobe, K. 1995. Oxidation of ethylene-glycol and glycolic acid by glycerol oxidase. Biosci. Biotechnol. Biochem. 59: 576-581. https://doi.org/10.1271/bbb.59.576
  7. Isobe, K. and H. Nishise. 1999. A method for glyoxylic acid production using cells of Alcaligenes sp. GOX373. J. Biotechnol. 75: 265-271. https://doi.org/10.1016/S0168-1656(99)00170-4
  8. Kanehisa, M. and S. Goto. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28: 27-30. https://doi.org/10.1093/nar/28.1.27
  9. Kessler, B., V. Lorenzo, and K. N. Timmis. 1992. A general system to integrate lacZ fusions into the chromosomes of Gramnegative eubacteria: Regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol. Gen. Genet. 233: 293-301. https://doi.org/10.1007/BF00587591
  10. Klebensberger, J., K. Lautenschlager, D. Bressler, J. Wingender, and B. Philipp. 2007. Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy. Environ. Microbiol. 9: 2247-2259. https://doi.org/10.1111/j.1462-2920.2007.01339.x
  11. Kornberg, H. L. and A. M. Gotto. 1959. Formation of malate from glycollate by Pseudomonas ovalis Chester. Nature 183: 1791-1793. https://doi.org/10.1038/1831791a0
  12. Kornberg, H. L. and A. M. Gotto. 1961. Metabolism of C2 compounds in micro-organisms. 6. Synthesis of cell constituents from glycollate by Pseudomonas sp. Biochem. J. 78: 69-82. https://doi.org/10.1042/bj0780069
  13. Kornberg, H. L. and J. G. Morris. 1965. The utilization of glycollate by Micrococcus denitrificans: The beta-hydroxyaspartate pathway. Biochem. J. 95: 577-586. https://doi.org/10.1042/bj0950577
  14. Kornberg, H. L. and J. R. Sadler. 1961. Metabolism of C2-compounds in micro-organisms. 8. A dicarboxylic acid cycle as a route for oxidation of glycollate by Escherichia coli. Biochem. J. 81: 503-513. https://doi.org/10.1042/bj0810503
  15. Lampe, D. J., B. J. Akerley, E. J. Rubin, J. J. Mekalanos, and H. M. Robertson. 1999. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. U.S.A. 96: 11428-11433. https://doi.org/10.1073/pnas.96.20.11428
  16. Li, X. Z., B. Hauer, and B. Rosche. 2007. Single-species microbial biofilm screening for industrial applications. Appl. Microbiol. Biotechnol. 76: 1255-1262. https://doi.org/10.1007/s00253-007-1108-4
  17. Merrett, M. J. and J. M. Lord. 1973. Glycollate formation and metabolism by algae. New Phytol. 72: 751-767. https://doi.org/10.1111/j.1469-8137.1973.tb02051.x
  18. Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. dos Santos, et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799-808. https://doi.org/10.1046/j.1462-2920.2002.00366.x
  19. Pfennig, N. and K. D. Lippert. 1966. Uber das vitamin B12-bedurfnis phototropher schwefelbakterien. Arch. Mikrobiol. 55: 245-256. https://doi.org/10.1007/BF00410246
  20. Sakai, S., K. Inokuma, Y. Nakashimada, and N. Nishio. 2008. Degradation of glyoxylate and glycolate with ATP synthesis by a thermophilic anaerobic bacterium, Moorella sp. strain HUC22-1. Appl. Environ. Microbiol. 74: 1447-1452. https://doi.org/10.1128/AEM.01421-07
  21. Schomburg, I., A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, and D. Schomburg. 2004. BRENDA, the enzyme database: Updates and major new developments. Nucleic Acids Res. 32: D431-D433. https://doi.org/10.1093/nar/gkh081
  22. Seip, J. E., S. K. Fager, J. E. Gavagan, L. W. Gosser, D. L. Anton, and R. Dicosimo. 1993. Biocatalytic production of glyoxylic-acid. J. Org. Chem. 58: 2253-2259. https://doi.org/10.1021/jo00060a047
  23. Simon, R., M. Oconnell, M. Labes, and A. Puhler. 1986. Plasmid vectors for the genetic-analysis and manipulation of Rhizobia and other Gram-negative bacteria. Methods Enzymol. 118: 640-659. https://doi.org/10.1016/0076-6879(86)18106-7
  24. Windgassen, M., A. Urban, and K. E. Jaeger. 2000. Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 193: 201-205. https://doi.org/10.1111/j.1574-6968.2000.tb09424.x
  25. Yadav, G. D. and V. R. Gupta. 2000. Synthesis of glyoxalic acid from glyoxal. Process Biochem. 36: 73-78. https://doi.org/10.1016/S0032-9592(00)00175-8

Cited by

  1. Catalytic Biofilms on Structured Packing for the Production of Glycolic Acid vol.23, pp.2, 2010, https://doi.org/10.4014/jmb.1207.07057
  2. Investigation of monoterpenoid resistance mechanisms in Pseudomonas putida and their consequences for biotransformations vol.104, pp.12, 2010, https://doi.org/10.1007/s00253-020-10566-3