References
- Bailey, E. and R. P. Hullin. 1966. The metabolism of glyoxylate by cell-free extracts of Pseudomonas sp. Biochem. J. 101: 755-763. https://doi.org/10.1042/bj1010755
- Blackmore, M. A. and J. R. Quayle. 1970. Microbial growth on oxalate by a route not involving glyoxylate carboligase. Biochem. J. 118: 53-59. https://doi.org/10.1042/bj1180053
- dos Santos, V., S. Heim, E. R. B. Moore, M. Stratz, and K. N. Timmis. 2004. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ. Microbiol. 6: 1264-1286. https://doi.org/10.1111/j.1462-2920.2004.00734.x
- Gavagan, J. E., S. K. Fager, J. E. Seip, M. S. Payne, D. L. Anton, and R. Dicosimo. 1995. Glyoxylic-acid production using microbial transformant catalysts. J. Org. Chem. 60: 3957-3963. https://doi.org/10.1021/jo00118a009
- Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
- Isobe, K. 1995. Oxidation of ethylene-glycol and glycolic acid by glycerol oxidase. Biosci. Biotechnol. Biochem. 59: 576-581. https://doi.org/10.1271/bbb.59.576
- Isobe, K. and H. Nishise. 1999. A method for glyoxylic acid production using cells of Alcaligenes sp. GOX373. J. Biotechnol. 75: 265-271. https://doi.org/10.1016/S0168-1656(99)00170-4
- Kanehisa, M. and S. Goto. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28: 27-30. https://doi.org/10.1093/nar/28.1.27
- Kessler, B., V. Lorenzo, and K. N. Timmis. 1992. A general system to integrate lacZ fusions into the chromosomes of Gramnegative eubacteria: Regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol. Gen. Genet. 233: 293-301. https://doi.org/10.1007/BF00587591
- Klebensberger, J., K. Lautenschlager, D. Bressler, J. Wingender, and B. Philipp. 2007. Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy. Environ. Microbiol. 9: 2247-2259. https://doi.org/10.1111/j.1462-2920.2007.01339.x
- Kornberg, H. L. and A. M. Gotto. 1959. Formation of malate from glycollate by Pseudomonas ovalis Chester. Nature 183: 1791-1793. https://doi.org/10.1038/1831791a0
- Kornberg, H. L. and A. M. Gotto. 1961. Metabolism of C2 compounds in micro-organisms. 6. Synthesis of cell constituents from glycollate by Pseudomonas sp. Biochem. J. 78: 69-82. https://doi.org/10.1042/bj0780069
- Kornberg, H. L. and J. G. Morris. 1965. The utilization of glycollate by Micrococcus denitrificans: The beta-hydroxyaspartate pathway. Biochem. J. 95: 577-586. https://doi.org/10.1042/bj0950577
- Kornberg, H. L. and J. R. Sadler. 1961. Metabolism of C2-compounds in micro-organisms. 8. A dicarboxylic acid cycle as a route for oxidation of glycollate by Escherichia coli. Biochem. J. 81: 503-513. https://doi.org/10.1042/bj0810503
- Lampe, D. J., B. J. Akerley, E. J. Rubin, J. J. Mekalanos, and H. M. Robertson. 1999. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. U.S.A. 96: 11428-11433. https://doi.org/10.1073/pnas.96.20.11428
- Li, X. Z., B. Hauer, and B. Rosche. 2007. Single-species microbial biofilm screening for industrial applications. Appl. Microbiol. Biotechnol. 76: 1255-1262. https://doi.org/10.1007/s00253-007-1108-4
- Merrett, M. J. and J. M. Lord. 1973. Glycollate formation and metabolism by algae. New Phytol. 72: 751-767. https://doi.org/10.1111/j.1469-8137.1973.tb02051.x
- Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. dos Santos, et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799-808. https://doi.org/10.1046/j.1462-2920.2002.00366.x
- Pfennig, N. and K. D. Lippert. 1966. Uber das vitamin B12-bedurfnis phototropher schwefelbakterien. Arch. Mikrobiol. 55: 245-256. https://doi.org/10.1007/BF00410246
- Sakai, S., K. Inokuma, Y. Nakashimada, and N. Nishio. 2008. Degradation of glyoxylate and glycolate with ATP synthesis by a thermophilic anaerobic bacterium, Moorella sp. strain HUC22-1. Appl. Environ. Microbiol. 74: 1447-1452. https://doi.org/10.1128/AEM.01421-07
- Schomburg, I., A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, and D. Schomburg. 2004. BRENDA, the enzyme database: Updates and major new developments. Nucleic Acids Res. 32: D431-D433. https://doi.org/10.1093/nar/gkh081
- Seip, J. E., S. K. Fager, J. E. Gavagan, L. W. Gosser, D. L. Anton, and R. Dicosimo. 1993. Biocatalytic production of glyoxylic-acid. J. Org. Chem. 58: 2253-2259. https://doi.org/10.1021/jo00060a047
- Simon, R., M. Oconnell, M. Labes, and A. Puhler. 1986. Plasmid vectors for the genetic-analysis and manipulation of Rhizobia and other Gram-negative bacteria. Methods Enzymol. 118: 640-659. https://doi.org/10.1016/0076-6879(86)18106-7
- Windgassen, M., A. Urban, and K. E. Jaeger. 2000. Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 193: 201-205. https://doi.org/10.1111/j.1574-6968.2000.tb09424.x
- Yadav, G. D. and V. R. Gupta. 2000. Synthesis of glyoxalic acid from glyoxal. Process Biochem. 36: 73-78. https://doi.org/10.1016/S0032-9592(00)00175-8
Cited by
- Catalytic Biofilms on Structured Packing for the Production of Glycolic Acid vol.23, pp.2, 2010, https://doi.org/10.4014/jmb.1207.07057
- Investigation of monoterpenoid resistance mechanisms in Pseudomonas putida and their consequences for biotransformations vol.104, pp.12, 2010, https://doi.org/10.1007/s00253-020-10566-3