Browse > Article
http://dx.doi.org/10.4014/jmb.0912.12005

Effect of gcl, glcB, and aceA Disruption on Glyoxylate Conversion by Pseudomonas putida JM37  

Li, Xuan Zhong (School of Biotechnology and Biomolecular Sciences, The University of New South Wales)
Klebensberger, Janosch (School of Biotechnology and Biomolecular Sciences, The University of New South Wales)
Rosche, Bettina (School of Biotechnology and Biomolecular Sciences, The University of New South Wales)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.6, 2010 , pp. 1006-1010 More about this Journal
Abstract
Pseudomonas putida JM37 metabolized glyoxylate at a specific rate of 55 g/g dry biomass/day. In order to investigate their role, three genes encoding enzymes that are potentially involved in the conversion of glyoxylate were disrupted; namely, tartronate semialdehyde synthase (gcl), malate synthase (glcB), and isocitrate lyase (aceA). Strains with transposon insertion in either of these genes were isolated from a 50,000 clone library employing a PCR-guided enrichment strategy. In addition, all three double mutants were constructed via targeted insertion of a knock-out plasmid. Neither mutation of gcl, glcB, and aceA nor any of the respective double mutations influenced glyoxylic acid conversion, indicating that P. putida JM37 may possess other enzymes and pathways for glyoxylate metabolism.
Keywords
Glyoxylic acid; biotransformation; Pseudomonas putida; tartronate semialdehyde synthase; malate synthase; isocitrate lyase;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kornberg, H. L. and A. M. Gotto. 1959. Formation of malate from glycollate by Pseudomonas ovalis Chester. Nature 183: 1791-1793.   DOI   ScienceOn
2 Sakai, S., K. Inokuma, Y. Nakashimada, and N. Nishio. 2008. Degradation of glyoxylate and glycolate with ATP synthesis by a thermophilic anaerobic bacterium, Moorella sp. strain HUC22-1. Appl. Environ. Microbiol. 74: 1447-1452.   DOI   ScienceOn
3 Schomburg, I., A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, and D. Schomburg. 2004. BRENDA, the enzyme database: Updates and major new developments. Nucleic Acids Res. 32: D431-D433.   DOI   ScienceOn
4 Seip, J. E., S. K. Fager, J. E. Gavagan, L. W. Gosser, D. L. Anton, and R. Dicosimo. 1993. Biocatalytic production of glyoxylic-acid. J. Org. Chem. 58: 2253-2259.   DOI   ScienceOn
5 Simon, R., M. Oconnell, M. Labes, and A. Puhler. 1986. Plasmid vectors for the genetic-analysis and manipulation of Rhizobia and other Gram-negative bacteria. Methods Enzymol. 118: 640-659.   DOI
6 Windgassen, M., A. Urban, and K. E. Jaeger. 2000. Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 193: 201-205.   DOI   ScienceOn
7 Li, X. Z., B. Hauer, and B. Rosche. 2007. Single-species microbial biofilm screening for industrial applications. Appl. Microbiol. Biotechnol. 76: 1255-1262.   DOI   ScienceOn
8 Yadav, G. D. and V. R. Gupta. 2000. Synthesis of glyoxalic acid from glyoxal. Process Biochem. 36: 73-78.   DOI   ScienceOn
9 Kornberg, H. L. and J. R. Sadler. 1961. Metabolism of C2-compounds in micro-organisms. 8. A dicarboxylic acid cycle as a route for oxidation of glycollate by Escherichia coli. Biochem. J. 81: 503-513.   DOI
10 Lampe, D. J., B. J. Akerley, E. J. Rubin, J. J. Mekalanos, and H. M. Robertson. 1999. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. U.S.A. 96: 11428-11433.   DOI   ScienceOn
11 Merrett, M. J. and J. M. Lord. 1973. Glycollate formation and metabolism by algae. New Phytol. 72: 751-767.   DOI   ScienceOn
12 Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. dos Santos, et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799-808.   DOI   ScienceOn
13 Pfennig, N. and K. D. Lippert. 1966. Uber das vitamin B12-bedurfnis phototropher schwefelbakterien. Arch. Mikrobiol. 55: 245-256.   DOI
14 Isobe, K. 1995. Oxidation of ethylene-glycol and glycolic acid by glycerol oxidase. Biosci. Biotechnol. Biochem. 59: 576-581.   DOI   ScienceOn
15 Isobe, K. and H. Nishise. 1999. A method for glyoxylic acid production using cells of Alcaligenes sp. GOX373. J. Biotechnol. 75: 265-271.   DOI   ScienceOn
16 Kanehisa, M. and S. Goto. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28: 27-30.   DOI
17 Kornberg, H. L. and J. G. Morris. 1965. The utilization of glycollate by Micrococcus denitrificans: The beta-hydroxyaspartate pathway. Biochem. J. 95: 577-586.   DOI
18 Kessler, B., V. Lorenzo, and K. N. Timmis. 1992. A general system to integrate lacZ fusions into the chromosomes of Gramnegative eubacteria: Regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol. Gen. Genet. 233: 293-301.   DOI   ScienceOn
19 Klebensberger, J., K. Lautenschlager, D. Bressler, J. Wingender, and B. Philipp. 2007. Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy. Environ. Microbiol. 9: 2247-2259.   DOI   ScienceOn
20 Kornberg, H. L. and A. M. Gotto. 1961. Metabolism of C2 compounds in micro-organisms. 6. Synthesis of cell constituents from glycollate by Pseudomonas sp. Biochem. J. 78: 69-82.   DOI
21 Gavagan, J. E., S. K. Fager, J. E. Seip, M. S. Payne, D. L. Anton, and R. Dicosimo. 1995. Glyoxylic-acid production using microbial transformant catalysts. J. Org. Chem. 60: 3957-3963.   DOI   ScienceOn
22 Bailey, E. and R. P. Hullin. 1966. The metabolism of glyoxylate by cell-free extracts of Pseudomonas sp. Biochem. J. 101: 755-763.   DOI
23 Blackmore, M. A. and J. R. Quayle. 1970. Microbial growth on oxalate by a route not involving glyoxylate carboligase. Biochem. J. 118: 53-59.   DOI
24 dos Santos, V., S. Heim, E. R. B. Moore, M. Stratz, and K. N. Timmis. 2004. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ. Microbiol. 6: 1264-1286.   DOI   ScienceOn
25 Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580.   DOI