DOI QR코드

DOI QR Code

New Dioscin-Glycosidase Hydrolyzing Multi-Glycosides of Dioscin from Absidia Strain

  • Fu, Yao Yao (College of Science, Yanbian University) ;
  • Yu, Hong Shan (College of Bio & Food Technology, Dalian Polytechnic University) ;
  • Tang, Si Hui (College of Bio & Food Technology, Dalian Polytechnic University) ;
  • Hu, Xiang Chun (College of Bio & Food Technology, Dalian Polytechnic University) ;
  • Wang, Yuan Hao (College of Bio & Food Technology, Dalian Polytechnic University) ;
  • Liu, Bing (College of Bio & Food Technology, Dalian Polytechnic University) ;
  • Yu, Chen Xu (Department of Agricultural and Biosystems Engineering, Iowa State University) ;
  • Jin, Feng Xie (College of Bio & Food Technology, Dalian Polytechnic University)
  • Received : 2009.10.28
  • Accepted : 2010.02.17
  • Published : 2010.06.28

Abstract

A novel dioscin-glycosidase that specifically hydrolyzes multi-glycosides, such as 3-O-${\alpha}$-L-($1{\to}4$)-rhamnoside, 3-O-${\alpha}$-L-($1{\to}2$)-rhamnoside, 3-O-${\alpha}$-L-($1{\to}4$)-arabinoside, and ${\beta}$-D-glucoside, on diosgenin was isolated from the Absidia sp.d38 strain, purified, and characterized. The molecular mass of the new dioscin-glycosidase is about 55 kDa based on SDS-PAGE. The dioscin-glycosidase gradually hydrolyzes either 3-O-${\alpha}$-L-($1{\to}4$)-Rha or 3-O-${\alpha}$-L-($1{\to}2$)-Rha from dioscin into 3-O-${\alpha}$-L-Rha-${\beta}$-D-Glc-diosgenin, further rapidly hydrolyzes the other ${\alpha}$-L-Rha from 3-O-${\alpha}$-L-Rha-${\beta}$-D-Glc-diosgenin into the main intermediate products of 3-O-${\beta}$-D-Glc-diosgenin, and subsequently hydrolyzes these intermediate products into aglycone as the final product. The enzyme also gradually hydrolyzes 3-O-${\alpha}$-L-($1{\to}4$)-arabinoside, 3-O-${\alpha}$-L-($1{\to}2$)-rhamnoside, and ${\beta}$-D-glucoside from [3-O-${\alpha}$-L-($1{\to}4$)-Ara, 3-O-${\alpha}$-L-($1{\to}4$)-Rha]-${\beta}$-D-Glc-diosgenin into diosgenin as the final product, exhibiting significant differences from previously reported glycosidases. The optimal temperature and pH for the new dioscin-glycosidase is $40^{\circ}C$ and 5.0, respectively. Whereas the activity of the new dioscin-glycosidase was not affected by $Na^+$, $K^+$, and $Mg^{2+}$ ions, it was significantly inhibited by $Cu^{2+}$ and $Hg^{2+}$ ions, and slightly affected by $Ca^{2+}$ ions.

Keywords

References

  1. Bae, E. A., S. Y. Park, and D. H. Kim. 2000. Constitutive $\beta$-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol. Pharm. Bull. 23: 1481-1485. https://doi.org/10.1248/bpb.23.1481
  2. Bradford, M. 1976. A rapid and sensitive method for quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 203-213.
  3. Cai, J., M. J. Liu, Z. Wang, and Y. Ju. 2002. Apoptosis induced by dioscin in hela cells. Biol. Pharm. Bull. 25: 193-196. https://doi.org/10.1248/bpb.25.193
  4. Feng, B., W. Hu, B. P. Ma, Y. Z. Wang, H. Z. Huang, S. Q. Wang, and X. H. Qian. 2007. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Appl. Microbiol. Biotechnol. 76: 1329-1338. https://doi.org/10.1007/s00253-007-1117-3
  5. Feng, B., L. P. Kang, B. P. Ma, B. Quan, W. B. Zhou, Y. Z. Wang, Y. Zhao, Y. X. Liu, and S. Q. Wang. 2007. The substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Tetrahedron 63: 6796-6812. https://doi.org/10.1016/j.tet.2007.04.076
  6. Ikeda, T., J. Ando, A. Miyazono, X. H. Zhu, H. Tsumagari, T. Nohara, K. Yokomizo, and M. Uyeda. 2000. Anti-herpes virus activity of Solanum steroidal glycosides. Biol. Pharm. Bull. 23: 363-364. https://doi.org/10.1248/bpb.23.363
  7. Jin, F. X., Y. Li, C. Z. Zhang, and H. S. Yu. 2001. Thermostable $\alpha$-amylase and $\alpha$-galactosidase production from the thermophilic and aerobic Bacillus sp.JF strain. Process Biochem. 36: 559-564. https://doi.org/10.1016/S0032-9592(00)00247-8
  8. Kobashi, K. 1998. Glycosides are natural prodrugs - Evidence using germ-free and gnotobiotic rats associated with a human intestinal bacterium. J. Trad. Med. 15: 1-13.
  9. Liu, B., Y. H. Wang, X. C. Hu, H. S. Yu, and F. X. Jin. 2005. Purification of dioscinase from microorganism. J. Microbiol. (Chinese) 23: 6-9.
  10. Liu, M. J., Z. Wang, Y. Ju, J. B. Zhou, Y. Wang, and R. N. Wong. 2004. The mitotic-arresting and apoptosis-inducing effects of diosgenyl saponins on human leukemia cell lines. Biol. Pharm. Bull. 27: 1059-1065. https://doi.org/10.1248/bpb.27.1059
  11. Li, M., X. W. Han, and B. Yu. 2003. Synthesis of monomethylated dioscin derivatives and their antitumor activities. Carbohydr. Res. 338: 117-121. https://doi.org/10.1016/S0008-6215(02)00443-3
  12. Li, K., Y. B. Tang, J. P. Fawcett, J. K. Gu, and D. F. Zhong. 2005. Characterization of the pharmacokinetics of dioscin in rat. Steroids 70: 525-530. https://doi.org/10.1016/j.steroids.2004.11.014
  13. Nakamura, T., C. Komori, Y. Y. Lee, F. Hashimoto, S. Yahara, T. Nohara, and A. Ejima. 1996. Cytotoxic activities of Solanum steroidal glycosides. Biol. Pharm. Bull. 19: 564-566. https://doi.org/10.1248/bpb.19.564
  14. Qian, S., H. S. Yu, C. Z. Zhang, M. C. Lu, H. Y. Wang, and F. X. Jin. 2005. Purification and characterization of dioscin-$\alpha$-L-rhamnosidase from pig liver. Chem. Pharm. Bull. 53: 934-937. https://doi.org/10.1248/cpb.53.934
  15. Wang, Y. H., B. Liu, H. S. Yu, and F. X. Jin. 2005. Separation and purification of dioscin products from enzyme reaction. J. Dalian Institute of Light Industry 24: 1-3.
  16. Weber, K., J. Pringle, and M. Osborn. 1971. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel method. Enzymology 26: 3-27.
  17. Yang, R. T., S. R. Tang, and F. S. Pan. 2007. Advances in study of Dioscorea zingiberensis. Chinese Wild Plant Resources 26: 1-5.
  18. Yu, H. S., C. Z. Zhang, M. C. Lu, F. Sun, Y. Y. Fu, and F. X. Jin. 2007. Purification and characterization of ginsenosidase hydrolyzing multi-glycosides of protopanaxadiol ginsenoside, Ginsenoside Type I. Chem. Pharm. Bull. 55: 231-235. https://doi.org/10.1248/cpb.55.231
  19. Yu, H. S., X. Q. Ma, Y. Guo, and F. X. Jin. 1999. Purification and characterization of ginsenoside-$\beta$-glycosidase. J. Ginseng Res. 23: 50-54.

Cited by

  1. A Novel Ginsenosidase from an Aspergillus Strain Hydrolyzing 6-O-Multi-Glycosides of Protopanaxatriol-Type Ginsenosides, Named Ginsenosidase Type IV vol.21, pp.10, 2010, https://doi.org/10.4014/jmb.1101.01044
  2. Enzyme kinetics of ginsenosidase type IV hydrolyzing 6-O-multi-glycosides of protopanaxatriol type ginsenosides vol.47, pp.1, 2010, https://doi.org/10.1016/j.procbio.2011.10.026
  3. A novel β-glucosidase from Aspergillus fumigates releases diosgenin from spirostanosides of Dioscorea zingiberensis C. H. Wright (DZW) vol.28, pp.3, 2010, https://doi.org/10.1007/s11274-011-0907-z
  4. Preparation of progenin III from total steroidal saponins of Dioscorea nipponica Makino using a crude enzyme from Aspergillus oryzae strain vol.40, pp.5, 2013, https://doi.org/10.1007/s10295-013-1246-x
  5. Protodioscin-glycosidase-1 hydrolyzing 26-O-β-d-glucoside and 3-O-(1 → 4)-α-l-rhamnoside of steroidal saponins from Aspergillus oryzae vol.97, pp.23, 2010, https://doi.org/10.1007/s00253-013-4791-3
  6. Recent biotechnological progress in enzymatic synthesis of glycosides vol.40, pp.12, 2010, https://doi.org/10.1007/s10295-013-1332-0
  7. Investigation on the mechanisms for biotransformation of saponins to diosgenin vol.30, pp.1, 2010, https://doi.org/10.1007/s11274-013-1429-7
  8. Preparation of przewalskinic acid A from salvianolic acid B using a crude enzyme from an Aspergillus oryzae strain vol.41, pp.5, 2010, https://doi.org/10.1007/s10295-013-1399-7
  9. Isolation of endophytic fungi from Dioscorea zingiberensis C. H. Wright and application for diosgenin production by solid-state fermentation vol.102, pp.13, 2010, https://doi.org/10.1007/s00253-018-9030-5
  10. Efficient enzyme-catalyzed production of diosgenin: inspired by the biotransformation mechanisms of steroid saponins in Talaromyces stollii CLY-6 vol.23, pp.16, 2010, https://doi.org/10.1039/d0gc04152a
  11. Efficient biocatalysis of trillin through recombinant enzyme hydrolysis for clean diosgenin production vol.153, pp.None, 2021, https://doi.org/10.1016/j.psep.2021.07.018