DOI QR코드

DOI QR Code

Effects of Raw Materials and Bulking Agents on the Thermophilic Composting Process

  • Tang, Jing-Chun (College of Environmental Science and Engineering, Nankai University/Key Laboratory of Pollution Processes and EnvironmentalCriteria, Ministry of Education) ;
  • Zhou, Qixing (College of Environmental Science and Engineering, Nankai University/Key Laboratory of Pollution Processes and EnvironmentalCriteria, Ministry of Education) ;
  • Katayama, Arata (EcoTopia Science Institute, Nagoya University)
  • Received : 2009.08.27
  • Accepted : 2009.12.07
  • Published : 2010.05.28

Abstract

Three typical biological solid wastes, namely, animal manure, garbage, and sewage sludge, were compared with regard to the composting process and the changes in microbial community structure. The effects of different bulking agents such as rice straw, vermiculite, sawdust, and waste paper were compared in manure compost. The differences in the microbial community were characterized by the quinone profile method. The highest mass reduction was found in garbage composting (56.8%), compared with manure and sludge (25% and 20.2%, respectively). A quinone content of $305.2\;{\mu}mol/kg$ was observed in the late stage of garbage composting, although the diversity index of the quinone profile was 9.7, lower than that in manure composting. The predominant quinone species was found to be MK-7, which corresponds to Gram-positive bacteria with a low G+C content, such as Bacillus. The predominance of MK-7 was especially found in the garbage and sludge composting process, and the increase in quinones with partially saturated long side-chains was shown in the late composting process of manure, which corresponded to the proliferation of Actinobacteria. The effects of different bulking agents on the composting process was much smaller than the effects of different raw materials. High organic matter content in the raw materials resulted in a higher microbial biomass and activity, which was connected to the high mass reduction rate.

Keywords

References

  1. Chang, J. I., J. J. Tsai, and K. H. Wu. 2006. Thermophilic composting of food waste. Bioresource Technol. 97: 116-122. https://doi.org/10.1016/j.biortech.2005.02.013
  2. Fang, M. and J. W. C. Wong. 2000. Changes in thermophilic bacteria population and diversity during composting of coal fly ash and sewage sludge. Water Air Soil Pollut. 124: 333-343. https://doi.org/10.1023/A:1005284629867
  3. Fontanive, V., D. Effron, F. Tortarolo, and N. Arrigo. 2004. Evaluation of parameters during composting of two contrasting raw materials. Compost Sci. Util. 12: 268-272. https://doi.org/10.1080/1065657X.2004.10702191
  4. Fujie, K., H. Y. Hu, H. Tanaka, K. Urano, K. Saitou, and A. Katayama. 1998. Analysis of respiratory quinones in soil for characterization of microbiota. Soil Sci. Plant Nutr. 44: 393-404. https://doi.org/10.1080/00380768.1998.10414461
  5. Green, S. J., F. C. Michel, Y. Hadar, and D. Minz. 2004. Similarity of bacterial communities in sawdust- and strawamended cow manure composts. FEMS Microbiol. Lett. 233: 115-123. https://doi.org/10.1016/j.femsle.2004.01.049
  6. Hiraishi, A., Y. Yamanaka, and T. Narihiro. 2000. Seasonal microbial community dynamics in a flowerpot-using personal composting system for disposal of household biowaste. J. Gen. Appl. Microbiol. 46: 133-146. https://doi.org/10.2323/jgam.46.133
  7. Hiraishi, A., T. Narihiro, and Y. Yamanaka. 2003. Microbial community dynamics during start-up operation of flowerpotusing fed-batch reactors for composting of household biowaste. Environ. Microbiol. 5: 765-776. https://doi.org/10.1046/j.1462-2920.2003.00473.x
  8. Hu, H. Y., K. Fujie, H. Nakagome, K. Urano, and A. Katayama. 1999. Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinones. Water Res. 33: 3263-3270. https://doi.org/10.1016/S0043-1354(99)00044-5
  9. Huang, G. F., J. W. C. Wong, Q. T. Wu, and B. B. Nagar. 2004. Effect of C/N on composting of pig manure with sawdust. Waste Manage. 24: 805-813. https://doi.org/10.1016/j.wasman.2004.03.011
  10. Huang, Q. F., T. B. Chen, D. Gao, and Z. C. Huang. 2005. Ambient air temperature effects on the temperature of sewage sludge composting process. J. Environ. Sci. 17: 1004-1007.
  11. Hwang, E. J., H. S. Shin, and J. H. Tay. 2002. Continuous feed, on-site composting of kitchen garbage. Waste Manage. Res. 20: 119-126. https://doi.org/10.1177/0734242X0202000203
  12. Ishii, K., M. Fukui, and S. Takii. 2000. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J. Appl. Microbiol. 89: 768-777. https://doi.org/10.1046/j.1365-2672.2000.01177.x
  13. Jung, E. J., P. K. Shin, and H. K. Bae. 1999. Effects of temperature and compost conditions on the biodegradation of degradable polymers. J. Microbiol. Biotechnol. 9: 464-468.
  14. Katayama, A., H. Y. Hu, M. Nozawa, S. Takahashi, and K. Fujie. 2002. Changes in the microbial community structure in soils treated with a mixture of glucose and peptone with reference to the respiratory quinone profile. Soil Sci. Plant Nutr. 48: 841-846. https://doi.org/10.1080/00380768.2002.10408710
  15. Katayama, A., K. Funasaka, and K Fujie. 2001. Changes in the respiratory quinone profile of a soil treated with pesticides. Biol. Fert. Soils 33: 454-459. https://doi.org/10.1007/s003740100355
  16. Kurisu, F., H. Satoh, T. Mino, and T. Matsuo. 2002. Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method. Water Res. 36: 429-438. https://doi.org/10.1016/S0043-1354(01)00225-1
  17. Kuroda, K., D. Hanajima, Y. Fukumoto, K. Suzuki, S. Kawamoto, J. Shima, and K. Haga. 2004. Isolation of thermophilic ammonium-tolerant bacterium and its application to reduce ammonia emission during composting of animal wastes. Biosci. Biotechnol. Biochem. 68: 286-292. https://doi.org/10.1271/bbb.68.286
  18. Michel, F. C., J. A. Pecchia, J. Rigot, and H. M. Keener. 2004. Mass and nutrient losses during the composting of dairy manure amended with sawdust or straw. Compost Sci. Util. 12: 323-334. https://doi.org/10.1080/1065657X.2004.10702201
  19. Nakasaki, K., M. Sasaki, M. Shoda, and H. Kubota. 1985. Characteristics of mesophilic bacteria isolated during thermophilic composting of sewage-sludge. Appl. Environ. Microb. 49: 42-45.
  20. Nakasaki, K., L. T. H. Tran, Y. Idemoto, M. Abe, and A. P. Rollon. 2009. Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge. Bioresour. Technol. 100: 676-682. https://doi.org/10.1016/j.biortech.2008.07.046
  21. Narihiro, T., S. Takebayashi, and A. Hiraishi. 2004. Activity and phylogenetic composition of proteolytic bacteria in mesophilic fed-batch garbage composting. Microbes Environ. 19: 292-300. https://doi.org/10.1264/jsme2.19.292
  22. Pagans, E., R. Barrena, X. Font, and A. Sanchez. 2006. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere 62: 1534-1542. https://doi.org/10.1016/j.chemosphere.2005.06.044
  23. Pasda, N., P. Limtong, R. Oliver, D. Montange, and S. Panichsakpatana. 2005. Influence of bulking agents and microbial activator on thermophilic aerobic transformation of sewage sludge. Environ. Technol. 26: 1127-1135. https://doi.org/10.1080/09593332608618481
  24. Pedro, M. S., S. Haruta, K. Nakamura, M. Hazaka, M. Ishii, and Y. Igarashi. 2003. Isolation and characterization of predominant microorganisms during decomposition of waste materials in a field-scale composter. J. Biosci. Bioeng. 95: 368-373. https://doi.org/10.1016/S1389-1723(03)80069-5
  25. Richard, T. L., A. H. M. Veeken, V. de Wilde, and H. V. M. Hamelers. 2004. Air-filled porosity and permeability relationships during solid-state fermentation. Biotech. Progress 20: 1372-1381. https://doi.org/10.1021/bp0499505
  26. Saludes, R. B., K. Iwabuchi, F. Miyatake, Y. Abe, and Y. Honda. 2008. Characterization of dairy cattle manure/wallboard paper compost mixture. Bioresource Technol. 99: 7285-7290. https://doi.org/10.1016/j.biortech.2007.12.080
  27. Seo, J. Y., J. S. Heo, T. H. Kim, W. H. Joo, and D. M. Crohn. 2004. Effect of vermiculite addition on compost produced from Korean food wastes. Waste Manage. 24: 981-987. https://doi.org/10.1016/j.wasman.2004.08.002
  28. Shin, H. S., E. J. Hwang, B. S. Park, and T. Sakai. 1999. The effects of seed inoculation on the rate of garbage composting. Environ. Technol. 20: 293-300. https://doi.org/10.1080/09593332008616820
  29. Shin, H. S. and Y. K. Jeong. 1996. The degradation of cellulosic fraction in composting of source separated food waste and paper mixture with change of C/N ratio. Environ. Technol. 17: 433-438. https://doi.org/10.1080/09593330.1996.9618363
  30. Steger, K., Y. Eklind, J. Olsson, and I. Sundh. 2005. Microbial community growth and utilization of carbon constituents during thermophilic composting at different oxygen levels. Microbiol. Ecol. 50: 163-171. https://doi.org/10.1007/s00248-004-0139-y
  31. Steger, K., A. Jarvis, T. Vasara, M. Romantschuk, and I. Sundh. 2007. Effects of differing temperature management on development of Actinobacteria populations during composting. Res. Microbiol. 158: 617-624. https://doi.org/10.1016/j.resmic.2007.05.006
  32. Strom, P. F. 1985. Identification of thermophilic bacteria in solid-waste composting. Appl. Environ. Microbiol. 50: 906-913.
  33. Tang, J. C. and A. Katayama. 2004. Application of quinone profile analysis for the characterization of microbial ecology in environment. Chin. J. Appl. Environ. Biol. 10: 530-536.
  34. Tang, J. C. and A. Katayama. 2005. Relating quinone profile detection to aerobic biodegradation in thermophilic composting processes of cattle manure with different bulking agents. World J. Microbiol. Biotechnol. 21: 1249-1254. https://doi.org/10.1007/s11274-005-1806-y
  35. Tang, J. C., N. Maie, Y. Tada, and A. Katayama. 2006. Characterization of the maturing process of cattle manure compost. Process Biochem. 41: 380-389. https://doi.org/10.1016/j.procbio.2005.06.022
  36. Tang, J. C., T. Kanamori, Y. Inoue, T. Yasuta, S. Yoshida, and A. Katayama. 2004. Changes in microbial community structure in thermophilic composting process of manure detected by quinone profile method. Process Biochem. 39: 1999-2006. https://doi.org/10.1016/j.procbio.2003.09.029
  37. Tang, J. C., Y. Inoue, T. Yasuta, S. Yoshida, and A. Katayama. 2003. Chemical and microbial properties of various compost products. Soil Sci. Plant Nutr. 49: 273-280. https://doi.org/10.1080/00380768.2003.10410007
  38. Tang, J. C., A. Shibata, Q. Zhou, and A. Katayama. 2007. Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. J. Biosci. Bioeng. 104: 321-328. https://doi.org/10.1263/jbb.104.321
  39. Tiquia, S. M. and N. F. Y. Tam. 2000. Co-composting of spent pig litter and sludge with forced-aeration. Bioresource Technol. 72: 1-7. https://doi.org/10.1016/S0960-8524(99)90092-5
  40. Tiquia, S. M. and N. F. Y. Tam. 2002. Characterization and composting of poultry litter in forced-aeration piles. Process Biochem. 37: 869-880. https://doi.org/10.1016/S0032-9592(01)00274-6
  41. Tremier, A., A. De Guardia, C. Massiani, and J. L. Martel. 2005. Influence of the airflow rate on heat and mass transfers during sewage sludge and bulking agent composting. Environ. Technol. 26: 1137-1149.
  42. Tseng, M., K. C. Hoang, M. K. Yang, S. F. Yang, and W. S. Chu. 2007. Polyester-degrading thermophilic actinomycetes isolated from different environment in Taiwan. Biodegradation 18: 579-583. https://doi.org/10.1007/s10532-006-9089-z
  43. Vargas-Garcia, M. D., F. F. Suarez-Estrella, M. J. Lopez, and J. Moreno. 2006. Influence of microbial inoculation and cocomposting material on the evolution of humic-like substances during composting of horticultural wastes. Process Biochem. 41: 1438-1443. https://doi.org/10.1016/j.procbio.2006.01.011
  44. Watanabe, K., N. Nagao, T. Toda, and N. Kurosawa. 2009. The dominant bacteria shifted from the order "Lactobacillales" to Bacillales and Actinomycetales during a start-up period of large-scale, completely-mixed composting reactor using plastic bottle flakes as bulking agent. World J. Microbiol. Biotechnol. 25: 803-811. https://doi.org/10.1007/s11274-008-9952-7
  45. Yu, H., G. M. Zeng, H. L. Huang, X. M. Xi, R. Y. Wang, D. L. Huang, G. H. Huang, and J. B. Li. 2007. Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18: 793-802. https://doi.org/10.1007/s10532-007-9108-8
  46. Yamada, Y. and Y. Kawase 2006. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption. Waste Manage. 26: 49-61. https://doi.org/10.1016/j.wasman.2005.03.012

Cited by

  1. Evaluation of Cellulolytic and Hemicellulolytic Abilities of Fungi Isolated from Coffee Residue and Sawdust Composts vol.26, pp.3, 2011, https://doi.org/10.1264/jsme2.me10210
  2. Modification of atmospheric sand-associated bacterial communities during Asian sandstorms in China and South Korea vol.114, pp.5, 2010, https://doi.org/10.1038/hdy.2014.102
  3. Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost vol.37, pp.20, 2016, https://doi.org/10.1080/09593330.2016.1155650
  4. Elucidation of functional chemical groups responsible of compost phytotoxicity using solid-state 13C NMR spectroscopy under different initial C/N ratios vol.25, pp.4, 2010, https://doi.org/10.1007/s11356-017-0704-9
  5. Effect of temperature and bulking agents on deep bio-drying of high-solid anaerobically digested sludge vol.38, pp.14, 2020, https://doi.org/10.1080/07373937.2019.1678043
  6. Assessing pollution removal efficiencies of some selected parameters by applying different remediation techniques for petroleum oily sludge vol.5, pp.None, 2021, https://doi.org/10.1016/j.envc.2021.100268