References
- Chang, J. I., J. J. Tsai, and K. H. Wu. 2006. Thermophilic composting of food waste. Bioresource Technol. 97: 116-122. https://doi.org/10.1016/j.biortech.2005.02.013
- Fang, M. and J. W. C. Wong. 2000. Changes in thermophilic bacteria population and diversity during composting of coal fly ash and sewage sludge. Water Air Soil Pollut. 124: 333-343. https://doi.org/10.1023/A:1005284629867
- Fontanive, V., D. Effron, F. Tortarolo, and N. Arrigo. 2004. Evaluation of parameters during composting of two contrasting raw materials. Compost Sci. Util. 12: 268-272. https://doi.org/10.1080/1065657X.2004.10702191
- Fujie, K., H. Y. Hu, H. Tanaka, K. Urano, K. Saitou, and A. Katayama. 1998. Analysis of respiratory quinones in soil for characterization of microbiota. Soil Sci. Plant Nutr. 44: 393-404. https://doi.org/10.1080/00380768.1998.10414461
- Green, S. J., F. C. Michel, Y. Hadar, and D. Minz. 2004. Similarity of bacterial communities in sawdust- and strawamended cow manure composts. FEMS Microbiol. Lett. 233: 115-123. https://doi.org/10.1016/j.femsle.2004.01.049
- Hiraishi, A., Y. Yamanaka, and T. Narihiro. 2000. Seasonal microbial community dynamics in a flowerpot-using personal composting system for disposal of household biowaste. J. Gen. Appl. Microbiol. 46: 133-146. https://doi.org/10.2323/jgam.46.133
- Hiraishi, A., T. Narihiro, and Y. Yamanaka. 2003. Microbial community dynamics during start-up operation of flowerpotusing fed-batch reactors for composting of household biowaste. Environ. Microbiol. 5: 765-776. https://doi.org/10.1046/j.1462-2920.2003.00473.x
- Hu, H. Y., K. Fujie, H. Nakagome, K. Urano, and A. Katayama. 1999. Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinones. Water Res. 33: 3263-3270. https://doi.org/10.1016/S0043-1354(99)00044-5
- Huang, G. F., J. W. C. Wong, Q. T. Wu, and B. B. Nagar. 2004. Effect of C/N on composting of pig manure with sawdust. Waste Manage. 24: 805-813. https://doi.org/10.1016/j.wasman.2004.03.011
- Huang, Q. F., T. B. Chen, D. Gao, and Z. C. Huang. 2005. Ambient air temperature effects on the temperature of sewage sludge composting process. J. Environ. Sci. 17: 1004-1007.
- Hwang, E. J., H. S. Shin, and J. H. Tay. 2002. Continuous feed, on-site composting of kitchen garbage. Waste Manage. Res. 20: 119-126. https://doi.org/10.1177/0734242X0202000203
- Ishii, K., M. Fukui, and S. Takii. 2000. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J. Appl. Microbiol. 89: 768-777. https://doi.org/10.1046/j.1365-2672.2000.01177.x
- Jung, E. J., P. K. Shin, and H. K. Bae. 1999. Effects of temperature and compost conditions on the biodegradation of degradable polymers. J. Microbiol. Biotechnol. 9: 464-468.
- Katayama, A., H. Y. Hu, M. Nozawa, S. Takahashi, and K. Fujie. 2002. Changes in the microbial community structure in soils treated with a mixture of glucose and peptone with reference to the respiratory quinone profile. Soil Sci. Plant Nutr. 48: 841-846. https://doi.org/10.1080/00380768.2002.10408710
- Katayama, A., K. Funasaka, and K Fujie. 2001. Changes in the respiratory quinone profile of a soil treated with pesticides. Biol. Fert. Soils 33: 454-459. https://doi.org/10.1007/s003740100355
- Kurisu, F., H. Satoh, T. Mino, and T. Matsuo. 2002. Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method. Water Res. 36: 429-438. https://doi.org/10.1016/S0043-1354(01)00225-1
- Kuroda, K., D. Hanajima, Y. Fukumoto, K. Suzuki, S. Kawamoto, J. Shima, and K. Haga. 2004. Isolation of thermophilic ammonium-tolerant bacterium and its application to reduce ammonia emission during composting of animal wastes. Biosci. Biotechnol. Biochem. 68: 286-292. https://doi.org/10.1271/bbb.68.286
- Michel, F. C., J. A. Pecchia, J. Rigot, and H. M. Keener. 2004. Mass and nutrient losses during the composting of dairy manure amended with sawdust or straw. Compost Sci. Util. 12: 323-334. https://doi.org/10.1080/1065657X.2004.10702201
- Nakasaki, K., M. Sasaki, M. Shoda, and H. Kubota. 1985. Characteristics of mesophilic bacteria isolated during thermophilic composting of sewage-sludge. Appl. Environ. Microb. 49: 42-45.
- Nakasaki, K., L. T. H. Tran, Y. Idemoto, M. Abe, and A. P. Rollon. 2009. Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge. Bioresour. Technol. 100: 676-682. https://doi.org/10.1016/j.biortech.2008.07.046
- Narihiro, T., S. Takebayashi, and A. Hiraishi. 2004. Activity and phylogenetic composition of proteolytic bacteria in mesophilic fed-batch garbage composting. Microbes Environ. 19: 292-300. https://doi.org/10.1264/jsme2.19.292
- Pagans, E., R. Barrena, X. Font, and A. Sanchez. 2006. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere 62: 1534-1542. https://doi.org/10.1016/j.chemosphere.2005.06.044
- Pasda, N., P. Limtong, R. Oliver, D. Montange, and S. Panichsakpatana. 2005. Influence of bulking agents and microbial activator on thermophilic aerobic transformation of sewage sludge. Environ. Technol. 26: 1127-1135. https://doi.org/10.1080/09593332608618481
- Pedro, M. S., S. Haruta, K. Nakamura, M. Hazaka, M. Ishii, and Y. Igarashi. 2003. Isolation and characterization of predominant microorganisms during decomposition of waste materials in a field-scale composter. J. Biosci. Bioeng. 95: 368-373. https://doi.org/10.1016/S1389-1723(03)80069-5
- Richard, T. L., A. H. M. Veeken, V. de Wilde, and H. V. M. Hamelers. 2004. Air-filled porosity and permeability relationships during solid-state fermentation. Biotech. Progress 20: 1372-1381. https://doi.org/10.1021/bp0499505
- Saludes, R. B., K. Iwabuchi, F. Miyatake, Y. Abe, and Y. Honda. 2008. Characterization of dairy cattle manure/wallboard paper compost mixture. Bioresource Technol. 99: 7285-7290. https://doi.org/10.1016/j.biortech.2007.12.080
- Seo, J. Y., J. S. Heo, T. H. Kim, W. H. Joo, and D. M. Crohn. 2004. Effect of vermiculite addition on compost produced from Korean food wastes. Waste Manage. 24: 981-987. https://doi.org/10.1016/j.wasman.2004.08.002
- Shin, H. S., E. J. Hwang, B. S. Park, and T. Sakai. 1999. The effects of seed inoculation on the rate of garbage composting. Environ. Technol. 20: 293-300. https://doi.org/10.1080/09593332008616820
- Shin, H. S. and Y. K. Jeong. 1996. The degradation of cellulosic fraction in composting of source separated food waste and paper mixture with change of C/N ratio. Environ. Technol. 17: 433-438. https://doi.org/10.1080/09593330.1996.9618363
- Steger, K., Y. Eklind, J. Olsson, and I. Sundh. 2005. Microbial community growth and utilization of carbon constituents during thermophilic composting at different oxygen levels. Microbiol. Ecol. 50: 163-171. https://doi.org/10.1007/s00248-004-0139-y
- Steger, K., A. Jarvis, T. Vasara, M. Romantschuk, and I. Sundh. 2007. Effects of differing temperature management on development of Actinobacteria populations during composting. Res. Microbiol. 158: 617-624. https://doi.org/10.1016/j.resmic.2007.05.006
- Strom, P. F. 1985. Identification of thermophilic bacteria in solid-waste composting. Appl. Environ. Microbiol. 50: 906-913.
- Tang, J. C. and A. Katayama. 2004. Application of quinone profile analysis for the characterization of microbial ecology in environment. Chin. J. Appl. Environ. Biol. 10: 530-536.
- Tang, J. C. and A. Katayama. 2005. Relating quinone profile detection to aerobic biodegradation in thermophilic composting processes of cattle manure with different bulking agents. World J. Microbiol. Biotechnol. 21: 1249-1254. https://doi.org/10.1007/s11274-005-1806-y
- Tang, J. C., N. Maie, Y. Tada, and A. Katayama. 2006. Characterization of the maturing process of cattle manure compost. Process Biochem. 41: 380-389. https://doi.org/10.1016/j.procbio.2005.06.022
- Tang, J. C., T. Kanamori, Y. Inoue, T. Yasuta, S. Yoshida, and A. Katayama. 2004. Changes in microbial community structure in thermophilic composting process of manure detected by quinone profile method. Process Biochem. 39: 1999-2006. https://doi.org/10.1016/j.procbio.2003.09.029
- Tang, J. C., Y. Inoue, T. Yasuta, S. Yoshida, and A. Katayama. 2003. Chemical and microbial properties of various compost products. Soil Sci. Plant Nutr. 49: 273-280. https://doi.org/10.1080/00380768.2003.10410007
- Tang, J. C., A. Shibata, Q. Zhou, and A. Katayama. 2007. Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. J. Biosci. Bioeng. 104: 321-328. https://doi.org/10.1263/jbb.104.321
- Tiquia, S. M. and N. F. Y. Tam. 2000. Co-composting of spent pig litter and sludge with forced-aeration. Bioresource Technol. 72: 1-7. https://doi.org/10.1016/S0960-8524(99)90092-5
- Tiquia, S. M. and N. F. Y. Tam. 2002. Characterization and composting of poultry litter in forced-aeration piles. Process Biochem. 37: 869-880. https://doi.org/10.1016/S0032-9592(01)00274-6
- Tremier, A., A. De Guardia, C. Massiani, and J. L. Martel. 2005. Influence of the airflow rate on heat and mass transfers during sewage sludge and bulking agent composting. Environ. Technol. 26: 1137-1149.
- Tseng, M., K. C. Hoang, M. K. Yang, S. F. Yang, and W. S. Chu. 2007. Polyester-degrading thermophilic actinomycetes isolated from different environment in Taiwan. Biodegradation 18: 579-583. https://doi.org/10.1007/s10532-006-9089-z
- Vargas-Garcia, M. D., F. F. Suarez-Estrella, M. J. Lopez, and J. Moreno. 2006. Influence of microbial inoculation and cocomposting material on the evolution of humic-like substances during composting of horticultural wastes. Process Biochem. 41: 1438-1443. https://doi.org/10.1016/j.procbio.2006.01.011
- Watanabe, K., N. Nagao, T. Toda, and N. Kurosawa. 2009. The dominant bacteria shifted from the order "Lactobacillales" to Bacillales and Actinomycetales during a start-up period of large-scale, completely-mixed composting reactor using plastic bottle flakes as bulking agent. World J. Microbiol. Biotechnol. 25: 803-811. https://doi.org/10.1007/s11274-008-9952-7
- Yu, H., G. M. Zeng, H. L. Huang, X. M. Xi, R. Y. Wang, D. L. Huang, G. H. Huang, and J. B. Li. 2007. Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18: 793-802. https://doi.org/10.1007/s10532-007-9108-8
- Yamada, Y. and Y. Kawase 2006. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption. Waste Manage. 26: 49-61. https://doi.org/10.1016/j.wasman.2005.03.012
Cited by
- Evaluation of Cellulolytic and Hemicellulolytic Abilities of Fungi Isolated from Coffee Residue and Sawdust Composts vol.26, pp.3, 2011, https://doi.org/10.1264/jsme2.me10210
- Modification of atmospheric sand-associated bacterial communities during Asian sandstorms in China and South Korea vol.114, pp.5, 2010, https://doi.org/10.1038/hdy.2014.102
- Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost vol.37, pp.20, 2016, https://doi.org/10.1080/09593330.2016.1155650
- Elucidation of functional chemical groups responsible of compost phytotoxicity using solid-state 13C NMR spectroscopy under different initial C/N ratios vol.25, pp.4, 2010, https://doi.org/10.1007/s11356-017-0704-9
- Effect of temperature and bulking agents on deep bio-drying of high-solid anaerobically digested sludge vol.38, pp.14, 2020, https://doi.org/10.1080/07373937.2019.1678043
- Assessing pollution removal efficiencies of some selected parameters by applying different remediation techniques for petroleum oily sludge vol.5, pp.None, 2021, https://doi.org/10.1016/j.envc.2021.100268