Browse > Article
http://dx.doi.org/10.4014/jmb.0908.08036

Effects of Raw Materials and Bulking Agents on the Thermophilic Composting Process  

Tang, Jing-Chun (College of Environmental Science and Engineering, Nankai University/Key Laboratory of Pollution Processes and EnvironmentalCriteria, Ministry of Education)
Zhou, Qixing (College of Environmental Science and Engineering, Nankai University/Key Laboratory of Pollution Processes and EnvironmentalCriteria, Ministry of Education)
Katayama, Arata (EcoTopia Science Institute, Nagoya University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.5, 2010 , pp. 925-934 More about this Journal
Abstract
Three typical biological solid wastes, namely, animal manure, garbage, and sewage sludge, were compared with regard to the composting process and the changes in microbial community structure. The effects of different bulking agents such as rice straw, vermiculite, sawdust, and waste paper were compared in manure compost. The differences in the microbial community were characterized by the quinone profile method. The highest mass reduction was found in garbage composting (56.8%), compared with manure and sludge (25% and 20.2%, respectively). A quinone content of $305.2\;{\mu}mol/kg$ was observed in the late stage of garbage composting, although the diversity index of the quinone profile was 9.7, lower than that in manure composting. The predominant quinone species was found to be MK-7, which corresponds to Gram-positive bacteria with a low G+C content, such as Bacillus. The predominance of MK-7 was especially found in the garbage and sludge composting process, and the increase in quinones with partially saturated long side-chains was shown in the late composting process of manure, which corresponded to the proliferation of Actinobacteria. The effects of different bulking agents on the composting process was much smaller than the effects of different raw materials. High organic matter content in the raw materials resulted in a higher microbial biomass and activity, which was connected to the high mass reduction rate.
Keywords
Composting; manure; garbage; sludge; quinone profile;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Tang, J. C., N. Maie, Y. Tada, and A. Katayama. 2006. Characterization of the maturing process of cattle manure compost. Process Biochem. 41: 380-389.   DOI   ScienceOn
2 Watanabe, K., N. Nagao, T. Toda, and N. Kurosawa. 2009. The dominant bacteria shifted from the order "Lactobacillales" to Bacillales and Actinomycetales during a start-up period of large-scale, completely-mixed composting reactor using plastic bottle flakes as bulking agent. World J. Microbiol. Biotechnol. 25: 803-811.   DOI   ScienceOn
3 Hiraishi, A., Y. Yamanaka, and T. Narihiro. 2000. Seasonal microbial community dynamics in a flowerpot-using personal composting system for disposal of household biowaste. J. Gen. Appl. Microbiol. 46: 133-146.   DOI   ScienceOn
4 Hwang, E. J., H. S. Shin, and J. H. Tay. 2002. Continuous feed, on-site composting of kitchen garbage. Waste Manage. Res. 20: 119-126.   DOI   ScienceOn
5 Kurisu, F., H. Satoh, T. Mino, and T. Matsuo. 2002. Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method. Water Res. 36: 429-438.   DOI   ScienceOn
6 Pagans, E., R. Barrena, X. Font, and A. Sanchez. 2006. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere 62: 1534-1542.   DOI   ScienceOn
7 Shin, H. S., E. J. Hwang, B. S. Park, and T. Sakai. 1999. The effects of seed inoculation on the rate of garbage composting. Environ. Technol. 20: 293-300.   DOI   ScienceOn
8 Ishii, K., M. Fukui, and S. Takii. 2000. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J. Appl. Microbiol. 89: 768-777.   DOI   ScienceOn
9 Steger, K., A. Jarvis, T. Vasara, M. Romantschuk, and I. Sundh. 2007. Effects of differing temperature management on development of Actinobacteria populations during composting. Res. Microbiol. 158: 617-624.   DOI   ScienceOn
10 Huang, Q. F., T. B. Chen, D. Gao, and Z. C. Huang. 2005. Ambient air temperature effects on the temperature of sewage sludge composting process. J. Environ. Sci. 17: 1004-1007.
11 Jung, E. J., P. K. Shin, and H. K. Bae. 1999. Effects of temperature and compost conditions on the biodegradation of degradable polymers. J. Microbiol. Biotechnol. 9: 464-468.
12 Katayama, A., H. Y. Hu, M. Nozawa, S. Takahashi, and K. Fujie. 2002. Changes in the microbial community structure in soils treated with a mixture of glucose and peptone with reference to the respiratory quinone profile. Soil Sci. Plant Nutr. 48: 841-846.   DOI   ScienceOn
13 Katayama, A., K. Funasaka, and K Fujie. 2001. Changes in the respiratory quinone profile of a soil treated with pesticides. Biol. Fert. Soils 33: 454-459.   DOI   ScienceOn
14 Kuroda, K., D. Hanajima, Y. Fukumoto, K. Suzuki, S. Kawamoto, J. Shima, and K. Haga. 2004. Isolation of thermophilic ammonium-tolerant bacterium and its application to reduce ammonia emission during composting of animal wastes. Biosci. Biotechnol. Biochem. 68: 286-292.   DOI   ScienceOn
15 Michel, F. C., J. A. Pecchia, J. Rigot, and H. M. Keener. 2004. Mass and nutrient losses during the composting of dairy manure amended with sawdust or straw. Compost Sci. Util. 12: 323-334.   DOI
16 Nakasaki, K., M. Sasaki, M. Shoda, and H. Kubota. 1985. Characteristics of mesophilic bacteria isolated during thermophilic composting of sewage-sludge. Appl. Environ. Microb. 49: 42-45.
17 Fontanive, V., D. Effron, F. Tortarolo, and N. Arrigo. 2004. Evaluation of parameters during composting of two contrasting raw materials. Compost Sci. Util. 12: 268-272.   DOI
18 Nakasaki, K., L. T. H. Tran, Y. Idemoto, M. Abe, and A. P. Rollon. 2009. Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge. Bioresour. Technol. 100: 676-682.   DOI   ScienceOn
19 Chang, J. I., J. J. Tsai, and K. H. Wu. 2006. Thermophilic composting of food waste. Bioresource Technol. 97: 116-122.   DOI   ScienceOn
20 Fang, M. and J. W. C. Wong. 2000. Changes in thermophilic bacteria population and diversity during composting of coal fly ash and sewage sludge. Water Air Soil Pollut. 124: 333-343.   DOI   ScienceOn
21 Fujie, K., H. Y. Hu, H. Tanaka, K. Urano, K. Saitou, and A. Katayama. 1998. Analysis of respiratory quinones in soil for characterization of microbiota. Soil Sci. Plant Nutr. 44: 393-404.   DOI   ScienceOn
22 Green, S. J., F. C. Michel, Y. Hadar, and D. Minz. 2004. Similarity of bacterial communities in sawdust- and strawamended cow manure composts. FEMS Microbiol. Lett. 233: 115-123.   DOI   ScienceOn
23 Hiraishi, A., T. Narihiro, and Y. Yamanaka. 2003. Microbial community dynamics during start-up operation of flowerpotusing fed-batch reactors for composting of household biowaste. Environ. Microbiol. 5: 765-776.   DOI   ScienceOn
24 Yu, H., G. M. Zeng, H. L. Huang, X. M. Xi, R. Y. Wang, D. L. Huang, G. H. Huang, and J. B. Li. 2007. Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18: 793-802.   DOI   ScienceOn
25 Hu, H. Y., K. Fujie, H. Nakagome, K. Urano, and A. Katayama. 1999. Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinones. Water Res. 33: 3263-3270.   DOI   ScienceOn
26 Huang, G. F., J. W. C. Wong, Q. T. Wu, and B. B. Nagar. 2004. Effect of C/N on composting of pig manure with sawdust. Waste Manage. 24: 805-813.   DOI   ScienceOn
27 Tiquia, S. M. and N. F. Y. Tam. 2002. Characterization and composting of poultry litter in forced-aeration piles. Process Biochem. 37: 869-880.   DOI   ScienceOn
28 Tremier, A., A. De Guardia, C. Massiani, and J. L. Martel. 2005. Influence of the airflow rate on heat and mass transfers during sewage sludge and bulking agent composting. Environ. Technol. 26: 1137-1149.
29 Tseng, M., K. C. Hoang, M. K. Yang, S. F. Yang, and W. S. Chu. 2007. Polyester-degrading thermophilic actinomycetes isolated from different environment in Taiwan. Biodegradation 18: 579-583.   DOI   ScienceOn
30 Vargas-Garcia, M. D., F. F. Suarez-Estrella, M. J. Lopez, and J. Moreno. 2006. Influence of microbial inoculation and cocomposting material on the evolution of humic-like substances during composting of horticultural wastes. Process Biochem. 41: 1438-1443.   DOI   ScienceOn
31 Yamada, Y. and Y. Kawase 2006. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption. Waste Manage. 26: 49-61.   DOI   ScienceOn
32 Tang, J. C., T. Kanamori, Y. Inoue, T. Yasuta, S. Yoshida, and A. Katayama. 2004. Changes in microbial community structure in thermophilic composting process of manure detected by quinone profile method. Process Biochem. 39: 1999-2006.   DOI   ScienceOn
33 Strom, P. F. 1985. Identification of thermophilic bacteria in solid-waste composting. Appl. Environ. Microbiol. 50: 906-913.
34 Tang, J. C. and A. Katayama. 2004. Application of quinone profile analysis for the characterization of microbial ecology in environment. Chin. J. Appl. Environ. Biol. 10: 530-536.
35 Tang, J. C. and A. Katayama. 2005. Relating quinone profile detection to aerobic biodegradation in thermophilic composting processes of cattle manure with different bulking agents. World J. Microbiol. Biotechnol. 21: 1249-1254.   DOI   ScienceOn
36 Tang, J. C., Y. Inoue, T. Yasuta, S. Yoshida, and A. Katayama. 2003. Chemical and microbial properties of various compost products. Soil Sci. Plant Nutr. 49: 273-280.   DOI   ScienceOn
37 Tang, J. C., A. Shibata, Q. Zhou, and A. Katayama. 2007. Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. J. Biosci. Bioeng. 104: 321-328.   DOI   ScienceOn
38 Tiquia, S. M. and N. F. Y. Tam. 2000. Co-composting of spent pig litter and sludge with forced-aeration. Bioresource Technol. 72: 1-7.   DOI   ScienceOn
39 Pasda, N., P. Limtong, R. Oliver, D. Montange, and S. Panichsakpatana. 2005. Influence of bulking agents and microbial activator on thermophilic aerobic transformation of sewage sludge. Environ. Technol. 26: 1127-1135.   DOI   ScienceOn
40 Narihiro, T., S. Takebayashi, and A. Hiraishi. 2004. Activity and phylogenetic composition of proteolytic bacteria in mesophilic fed-batch garbage composting. Microbes Environ. 19: 292-300.   DOI   ScienceOn
41 Pedro, M. S., S. Haruta, K. Nakamura, M. Hazaka, M. Ishii, and Y. Igarashi. 2003. Isolation and characterization of predominant microorganisms during decomposition of waste materials in a field-scale composter. J. Biosci. Bioeng. 95: 368-373.   DOI
42 Richard, T. L., A. H. M. Veeken, V. de Wilde, and H. V. M. Hamelers. 2004. Air-filled porosity and permeability relationships during solid-state fermentation. Biotech. Progress 20: 1372-1381.   DOI   ScienceOn
43 Saludes, R. B., K. Iwabuchi, F. Miyatake, Y. Abe, and Y. Honda. 2008. Characterization of dairy cattle manure/wallboard paper compost mixture. Bioresource Technol. 99: 7285-7290.   DOI   ScienceOn
44 Seo, J. Y., J. S. Heo, T. H. Kim, W. H. Joo, and D. M. Crohn. 2004. Effect of vermiculite addition on compost produced from Korean food wastes. Waste Manage. 24: 981-987.   DOI   ScienceOn
45 Shin, H. S. and Y. K. Jeong. 1996. The degradation of cellulosic fraction in composting of source separated food waste and paper mixture with change of C/N ratio. Environ. Technol. 17: 433-438.   DOI
46 Steger, K., Y. Eklind, J. Olsson, and I. Sundh. 2005. Microbial community growth and utilization of carbon constituents during thermophilic composting at different oxygen levels. Microbiol. Ecol. 50: 163-171.   DOI   ScienceOn