References
- Benedict, L. R. N. and R. S. Flamiano. 2004. Use of bacteriophages as therapy for Escherichia coli-induced bacteremia in mouse models. Phil. J. Microbiol. Infect. Dis 33: 47-51.
- Biswas, B., S. Adhya, P. Washart, B. Paul, A. N. Trostel, B. Powell, R. Carlton, and C. R. Merril. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70: 204-210. https://doi.org/10.1128/IAI.70.1.204-210.2002
- Bogovazova, G. G., N. N. Voroshilova, and V. M. Bondarenko. 1991. The efficacy of Klebsiella pneumoniae bacteriophage in the therapy of experimental Klebsiella infection. Zh. Mikrobiol. Epidemiol. Immunobiol. 4: 5-8.
- Bogovazova, G. G., N. N. Voroshilova, G. A. Gorbatkova, E. V. Afanaseva, T. B. Kazakova, V. D. Smirnov, et al. 1992. Immunobiological properties and therapeutic effectiveness of preparations from Klebsiella bacteriophages. Zh. Mikrobiol. Epidemiol. Immunobiol. 3: 30-33.
- Carlton, R. M. 1999. Phage therapy: Past history and future prospects. Arch. Immun. Ther. Exp. 47: 267-274.
- Cerveny, K. E., A. DePaola, D. H. Duckworth, and P. A. Gulig. 2002. Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect. Immun. 70: 6251-6262. https://doi.org/10.1128/IAI.70.11.6251-6262.2002
- Chhibber, S. and J. Bajaj. 1995. Polysaccharide-iron regulated cell surface protein conjugate vaccine: Its role in protection against Klebsiella pneumoniae induced lobar pneumonia. Vaccine 13: 179-184. https://doi.org/10.1016/0264-410X(95)93133-T
- Chhibber, S., S. Kaur, and S. Kumari. 2008. Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055- mediated lobar pneumonia in mice. J. Med. Microbiol. 57: 1508-1513. https://doi.org/10.1099/jmm.0.2008/002873-0
- Church, D., S. Elsayed, O. Reid, B. Winston, and R. Lindsay. 2006. Burn wound infections. Clin. Microbiol. Rev. 19: 403-434. https://doi.org/10.1128/CMR.19.2.403-434.2006
- Dale, R. M. K., G. Schnell, and J. P. Wong. 2004. Therapeutic efficacy of "Nubiotics" against burn wound infection by Pseudomonas aeruginosa. Antimicrob. Agents Chem. 48: 2918-2923. https://doi.org/10.1128/AAC.48.8.2918-2923.2004
- Hanlon, G. W. 2007. Bacteriophages: An appraisal of their role in the treatment of bacterial infections. Int. J. Antimicrob. Agents 30: 118-128.
- Hansbrough, J. F. 1987. Burn wound sepsis. J. Intensive Care Med. 2: 313-327. https://doi.org/10.1177/088506668700200604
- Kumar, V., K. Harjai, and S. Chhibber. 2008. Effect of clarithromycin on lung inflammation and alveolar macrophage function in Klebsiella penumoniae B5055-induced acute lung infection in BALB/c mice. J. Chemother. 20: 609-614. https://doi.org/10.1179/joc.2008.20.5.609
- Kumari, S., K. Harjai, and S. Chhibber. 2009. Efficacy of bacteriophage treatment in murine burn wound infection induced by Klebsiella pneumoniae. J. Microbiol. Biotechnol. 19: 622-628. https://doi.org/10.4014/jmb.0808.493
- Kropinski, A. M. 2006. Phage therapy - everything old is new again. Can. J. Infect. Dis. Med. Microbiol. 17: 297-306.
- Levin, B. and J. J. Bull. 1996. Phage therapy revisited: The population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am. Nat. 147: 881-898. https://doi.org/10.1086/285884
- Livermore, D. H. 2004. The need for new antibiotics. Clin. Microbiol. Infect. 10(Suppl 4): 1-9.
- Lowbury, E. J. and A. M. Hood. 1953. The acquired resistance of Staphylococcus aureus to bacteriophage. J. Gen. Microbiol. 9: 524-535. https://doi.org/10.1099/00221287-9-3-524
- Matsuzaki, S., M. Rashel, J. Uchiyma, T. Ujihara, M. Kuroda, M. Ikeuchi, M. Fujieda, J. Wakiguchi, and S. Imai. 2005. Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. J. Infect. Chem. 11: 211-219. https://doi.org/10.1007/s10156-005-0408-9
- Matsuzaki, S., M. Yasuda, H. Nishikawa, M. Kuroda, T. Ujihara, T. Shuin, et al. 2003. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage OMR11. J. Infect. Dis. 187: 613-624. https://doi.org/10.1086/374001
- Mayhall, C. G. 2003. The epidemiology of burn wound infections: Then and now. Clin. Infect. Dis. 37: 543-550. https://doi.org/10.1086/376993
- McVay, C., S. M. Velasquez, and J. A. Fralick. 2007. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob. Agents Chem. 51: 1934-1938. https://doi.org/10.1128/AAC.01028-06
- Nasser, S., A. Mabrouk, and A. Maher. 2003. Colonization of burn wounds in Ain Shams University Burn Unit. Burns 29: 229-233. https://doi.org/10.1016/S0305-4179(02)00285-1
- Ozumba, U. C. and B. C. Jiburum. 2000. Bacteriology of burn wounds in Enugu, Nigeria. Burns 26: 178-180. https://doi.org/10.1016/S0305-4179(99)00075-3
- Pajunen, M., S. Kiljunen, and M. Skurnik. 2000. Bacteriophage OYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J. Bacteriol. 182: 5114-5120. https://doi.org/10.1128/JB.182.18.5114-5120.2000
- Powers, J. H. 2004. Antimicrobial drug development - the past, the present, and the future. Clin. Microbiol. Infect. 10(Suppl 4): 23-31. https://doi.org/10.1111/j.1465-0691.2004.1007.x
- Sharma, P. 2006. Virulence of phage resistant mutants of K. pneumoniae: An in vitro and in vivo comparative study. M.Sc Thesis. Panjab University, Chandigarh, India.
- Skurnik, M. and E. Strauch. 2006. Phage therapy: Facts and fiction. Int. J. Med. Microbiol. 296: 5-14.
- Skurnik, M., M. Pajunen, and S. Kiljunen. 2007. Biotechnological challenges of phage therapy. Biotechnol. Lett. 29: 995-1003. https://doi.org/10.1007/s10529-007-9346-1
- Smith, H. W., M. B. Huggins, and K. M. Shaw. 1987. The control of experimental Escherichia coli diarrhea in calves by means of bacteriophages. J. Gen. Microbiol. 133: 1111-1126.
- Smith, H. W. and M. B. Huggins. 1983. Effectiveness of phages in treating experimental Escherichia coli diarrhea in calves, piglets and lambs. J. Gen. Microbiol. 129: 2659-2675.
- Theil, K. 2004. Old dogma, new tricks - 21st century phage therapy. Nat. Biotech. 22: 31-36. https://doi.org/10.1038/nbt0104-31
- Vindenes, H. and R. Bjerknes. 1995 Microbial colonization of large wounds. Burns 21: 575-579. https://doi.org/10.1016/0305-4179(95)00047-F
- Watanabe, R., T. Matsumoto, G. Sano, Y. Ishii, K. Tateda, Y. Sumiyama, et al. 2007. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob. Agents Chem. 51: 446-452. https://doi.org/10.1128/AAC.00635-06
Cited by
- Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens vol.9, pp.9, 2010, https://doi.org/10.1586/eri.11.90
- Fighting bacterial infections—Future treatment options vol.14, pp.2, 2010, https://doi.org/10.1016/j.drup.2011.02.001
- Isolation and characterisation of KP34—a novel φKMV-like bacteriophage for Klebsiella pneumoniae vol.90, pp.4, 2010, https://doi.org/10.1007/s00253-011-3149-y
- Understanding the host inflammatory response to wound infection: An in vivo study of Klebsiella pneumoniae in a rabbit ear wound model vol.20, pp.2, 2010, https://doi.org/10.1111/j.1524-475x.2012.00764.x
- Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments vol.31, pp.11, 2012, https://doi.org/10.1007/s10096-012-1691-x
- Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae vol.10, pp.1, 2010, https://doi.org/10.1186/1743-422x-10-100
- Isolation and Characterisation of Lytic Bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca vol.66, pp.3, 2010, https://doi.org/10.1007/s00284-012-0264-7
- Klebsiella Phage vB_KleM-RaK2 — A Giant Singleton Virus of the Family Myoviridae vol.8, pp.4, 2010, https://doi.org/10.1371/journal.pone.0060717
- Klebsiella pneumoniae subsp. pneumoniae –bacteriophage combination from the caecal effluent of a healthy woman vol.3, pp.None, 2010, https://doi.org/10.7717/peerj.1061
- Inhalation Study of Mycobacteriophage D29 Aerosol for Mice by Endotracheal Route and Nose-Only Exposure vol.29, pp.5, 2016, https://doi.org/10.1089/jamp.2015.1233
- Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa vol.52, pp.2, 2010, https://doi.org/10.1016/j.ajme.2015.05.002
- In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S . aureus (MRSA) Mediated Orthopaedic Device Related Infections vol.11, pp.6, 2010, https://doi.org/10.1371/journal.pone.0157626
- Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections vol.12, pp.7, 2010, https://doi.org/10.1371/journal.pone.0179245
- Preparation and characterization of gentamycin sulfate-impregnated gelatin microspheres/collagen-cellulose/nanocrystal scaffolds vol.75, pp.1, 2010, https://doi.org/10.1007/s00289-017-2020-4
- Bacteriophages To Sensitize a Pathogenic New Delhi Metallo β-Lactamase-Positive Escherichia coli to Solar Disinfection vol.52, pp.24, 2018, https://doi.org/10.1021/acs.est.8b04501
- Characterization and Genomic Analysis of Novel Bacteriophage ΦCS01 Targeting Cronobacter sakazakii vol.29, pp.5, 2010, https://doi.org/10.4014/jmb.1812.12054
- Phage therapy efficacy: a review of the last 10 years of preclinical studies vol.46, pp.1, 2010, https://doi.org/10.1080/1040841x.2020.1729695
- Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses vol.69, pp.2, 2010, https://doi.org/10.1099/jmm.0.001141
- Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: Klebsiella pneumoniae vol.9, pp.1, 2020, https://doi.org/10.1128/ecosalplus.esp-0029-2019
- Isolation and Characterization of a Novel Phage for Controlling Multidrug-Resistant Klebsiella pneumoniae vol.8, pp.4, 2020, https://doi.org/10.3390/microorganisms8040542
- Identification of a newly isolated lytic bacteriophage against K24 capsular type, carbapenem resistant Klebsiella pneumoniae isolates vol.10, pp.None, 2010, https://doi.org/10.1038/s41598-020-62691-8
- Animal Models of Phage Therapy vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.631794
- Bacteriophage Treatment Rescues Mice Infected with Multidrug-Resistant Klebsiella pneumoniae ST258 vol.12, pp.1, 2010, https://doi.org/10.1128/mbio.00034-21
- Use of Customized Bacteriophages in the Treatment of Chronic Nonhealing Wounds: A Prospective Study vol.20, pp.1, 2021, https://doi.org/10.1177/1534734619881076