DOI QR코드

DOI QR Code

Evidence to Support the Therapeutic Potential of Bacteriophage Kpn5 in Burn Wound Infection Caused by Klebsiella pneumoniae in BALB/c Mice

  • Kumar, Seema (Basic Medical Sciences Building, Department of Microbiology, Panjab University) ;
  • Harja, Kusum (Basic Medical Sciences Building, Department of Microbiology, Panjab University) ;
  • Chhibber, Sanjay (Basic Medical Sciences Building, Department of Microbiology, Panjab University)
  • Received : 2009.09.10
  • Accepted : 2010.02.04
  • Published : 2010.05.28

Abstract

The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. Bacteriophages have been suggested as an alternative therapeutic agent for such bacterial infections. In the present study, we examined the therapeutic potential of phage Kpn5 in the treatment of Klebsiella pneumoniae B5055-induced burn wound infection in a mouse model. An experimental model of contact burn wound infection was established in mice employing K. pneumoniae B5055 to assess the efficacy of phage Kpn5 in vivo. Survival and stability of phage Kpn5 were evaluated in mice and the maximum phage count in various organs was obtained at 6 h and persisted until 36 h. The Kpn5 phage was found to be effective in the treatment of Klebsiella-induced burn wound infection in mice when phage was administered immediately after bacterial challange. Even when treatment was delayed up to 18 h post infection, when all animals were moribund, approximately 26.66% of the mice could be rescued by a single injection of this phage preparation. The ability of this phage to protect bacteremic mice was demonstrated to be due to the functional capabilities of the phage and not due to a nonspecific immune effect. The levels of pro-inflammatory cytokines (IL-$1{\beta}$ and TNF-${\alpha}$) and anti-inflammatory cytokines (IL-10) were significantly lower in sera and lungs of phage-treated mice than phage untreated control mice. The results of the present study bring out the potential of bacteriophage therapy as an alternate preventive approach to treat K. pneumoniae B5055-induced burn wound infections. This approach not only helps in the clearance of bacteria from the host but also protects against the ensuing inflammatory damage due to the exaggerated response seen in any infectious process.

Keywords

References

  1. Benedict, L. R. N. and R. S. Flamiano. 2004. Use of bacteriophages as therapy for Escherichia coli-induced bacteremia in mouse models. Phil. J. Microbiol. Infect. Dis 33: 47-51.
  2. Biswas, B., S. Adhya, P. Washart, B. Paul, A. N. Trostel, B. Powell, R. Carlton, and C. R. Merril. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70: 204-210. https://doi.org/10.1128/IAI.70.1.204-210.2002
  3. Bogovazova, G. G., N. N. Voroshilova, and V. M. Bondarenko. 1991. The efficacy of Klebsiella pneumoniae bacteriophage in the therapy of experimental Klebsiella infection. Zh. Mikrobiol. Epidemiol. Immunobiol. 4: 5-8.
  4. Bogovazova, G. G., N. N. Voroshilova, G. A. Gorbatkova, E. V. Afanaseva, T. B. Kazakova, V. D. Smirnov, et al. 1992. Immunobiological properties and therapeutic effectiveness of preparations from Klebsiella bacteriophages. Zh. Mikrobiol. Epidemiol. Immunobiol. 3: 30-33.
  5. Carlton, R. M. 1999. Phage therapy: Past history and future prospects. Arch. Immun. Ther. Exp. 47: 267-274.
  6. Cerveny, K. E., A. DePaola, D. H. Duckworth, and P. A. Gulig. 2002. Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect. Immun. 70: 6251-6262. https://doi.org/10.1128/IAI.70.11.6251-6262.2002
  7. Chhibber, S. and J. Bajaj. 1995. Polysaccharide-iron regulated cell surface protein conjugate vaccine: Its role in protection against Klebsiella pneumoniae induced lobar pneumonia. Vaccine 13: 179-184. https://doi.org/10.1016/0264-410X(95)93133-T
  8. Chhibber, S., S. Kaur, and S. Kumari. 2008. Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055- mediated lobar pneumonia in mice. J. Med. Microbiol. 57: 1508-1513. https://doi.org/10.1099/jmm.0.2008/002873-0
  9. Church, D., S. Elsayed, O. Reid, B. Winston, and R. Lindsay. 2006. Burn wound infections. Clin. Microbiol. Rev. 19: 403-434. https://doi.org/10.1128/CMR.19.2.403-434.2006
  10. Dale, R. M. K., G. Schnell, and J. P. Wong. 2004. Therapeutic efficacy of "Nubiotics" against burn wound infection by Pseudomonas aeruginosa. Antimicrob. Agents Chem. 48: 2918-2923. https://doi.org/10.1128/AAC.48.8.2918-2923.2004
  11. Hanlon, G. W. 2007. Bacteriophages: An appraisal of their role in the treatment of bacterial infections. Int. J. Antimicrob. Agents 30: 118-128.
  12. Hansbrough, J. F. 1987. Burn wound sepsis. J. Intensive Care Med. 2: 313-327. https://doi.org/10.1177/088506668700200604
  13. Kumar, V., K. Harjai, and S. Chhibber. 2008. Effect of clarithromycin on lung inflammation and alveolar macrophage function in Klebsiella penumoniae B5055-induced acute lung infection in BALB/c mice. J. Chemother. 20: 609-614. https://doi.org/10.1179/joc.2008.20.5.609
  14. Kumari, S., K. Harjai, and S. Chhibber. 2009. Efficacy of bacteriophage treatment in murine burn wound infection induced by Klebsiella pneumoniae. J. Microbiol. Biotechnol. 19: 622-628. https://doi.org/10.4014/jmb.0808.493
  15. Kropinski, A. M. 2006. Phage therapy - everything old is new again. Can. J. Infect. Dis. Med. Microbiol. 17: 297-306.
  16. Levin, B. and J. J. Bull. 1996. Phage therapy revisited: The population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am. Nat. 147: 881-898. https://doi.org/10.1086/285884
  17. Livermore, D. H. 2004. The need for new antibiotics. Clin. Microbiol. Infect. 10(Suppl 4): 1-9.
  18. Lowbury, E. J. and A. M. Hood. 1953. The acquired resistance of Staphylococcus aureus to bacteriophage. J. Gen. Microbiol. 9: 524-535. https://doi.org/10.1099/00221287-9-3-524
  19. Matsuzaki, S., M. Rashel, J. Uchiyma, T. Ujihara, M. Kuroda, M. Ikeuchi, M. Fujieda, J. Wakiguchi, and S. Imai. 2005. Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. J. Infect. Chem. 11: 211-219. https://doi.org/10.1007/s10156-005-0408-9
  20. Matsuzaki, S., M. Yasuda, H. Nishikawa, M. Kuroda, T. Ujihara, T. Shuin, et al. 2003. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage OMR11. J. Infect. Dis. 187: 613-624. https://doi.org/10.1086/374001
  21. Mayhall, C. G. 2003. The epidemiology of burn wound infections: Then and now. Clin. Infect. Dis. 37: 543-550. https://doi.org/10.1086/376993
  22. McVay, C., S. M. Velasquez, and J. A. Fralick. 2007. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob. Agents Chem. 51: 1934-1938. https://doi.org/10.1128/AAC.01028-06
  23. Nasser, S., A. Mabrouk, and A. Maher. 2003. Colonization of burn wounds in Ain Shams University Burn Unit. Burns 29: 229-233. https://doi.org/10.1016/S0305-4179(02)00285-1
  24. Ozumba, U. C. and B. C. Jiburum. 2000. Bacteriology of burn wounds in Enugu, Nigeria. Burns 26: 178-180. https://doi.org/10.1016/S0305-4179(99)00075-3
  25. Pajunen, M., S. Kiljunen, and M. Skurnik. 2000. Bacteriophage OYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J. Bacteriol. 182: 5114-5120. https://doi.org/10.1128/JB.182.18.5114-5120.2000
  26. Powers, J. H. 2004. Antimicrobial drug development - the past, the present, and the future. Clin. Microbiol. Infect. 10(Suppl 4): 23-31. https://doi.org/10.1111/j.1465-0691.2004.1007.x
  27. Sharma, P. 2006. Virulence of phage resistant mutants of K. pneumoniae: An in vitro and in vivo comparative study. M.Sc Thesis. Panjab University, Chandigarh, India.
  28. Skurnik, M. and E. Strauch. 2006. Phage therapy: Facts and fiction. Int. J. Med. Microbiol. 296: 5-14.
  29. Skurnik, M., M. Pajunen, and S. Kiljunen. 2007. Biotechnological challenges of phage therapy. Biotechnol. Lett. 29: 995-1003. https://doi.org/10.1007/s10529-007-9346-1
  30. Smith, H. W., M. B. Huggins, and K. M. Shaw. 1987. The control of experimental Escherichia coli diarrhea in calves by means of bacteriophages. J. Gen. Microbiol. 133: 1111-1126.
  31. Smith, H. W. and M. B. Huggins. 1983. Effectiveness of phages in treating experimental Escherichia coli diarrhea in calves, piglets and lambs. J. Gen. Microbiol. 129: 2659-2675.
  32. Theil, K. 2004. Old dogma, new tricks - 21st century phage therapy. Nat. Biotech. 22: 31-36. https://doi.org/10.1038/nbt0104-31
  33. Vindenes, H. and R. Bjerknes. 1995 Microbial colonization of large wounds. Burns 21: 575-579. https://doi.org/10.1016/0305-4179(95)00047-F
  34. Watanabe, R., T. Matsumoto, G. Sano, Y. Ishii, K. Tateda, Y. Sumiyama, et al. 2007. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob. Agents Chem. 51: 446-452. https://doi.org/10.1128/AAC.00635-06

Cited by

  1. Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens vol.9, pp.9, 2010, https://doi.org/10.1586/eri.11.90
  2. Fighting bacterial infections—Future treatment options vol.14, pp.2, 2010, https://doi.org/10.1016/j.drup.2011.02.001
  3. Isolation and characterisation of KP34—a novel φKMV-like bacteriophage for Klebsiella pneumoniae vol.90, pp.4, 2010, https://doi.org/10.1007/s00253-011-3149-y
  4. Understanding the host inflammatory response to wound infection: An in vivo study of Klebsiella pneumoniae in a rabbit ear wound model vol.20, pp.2, 2010, https://doi.org/10.1111/j.1524-475x.2012.00764.x
  5. Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments vol.31, pp.11, 2012, https://doi.org/10.1007/s10096-012-1691-x
  6. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae vol.10, pp.1, 2010, https://doi.org/10.1186/1743-422x-10-100
  7. Isolation and Characterisation of Lytic Bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca vol.66, pp.3, 2010, https://doi.org/10.1007/s00284-012-0264-7
  8. Klebsiella Phage vB_KleM-RaK2 — A Giant Singleton Virus of the Family Myoviridae vol.8, pp.4, 2010, https://doi.org/10.1371/journal.pone.0060717
  9. Klebsiella pneumoniae subsp. pneumoniae –bacteriophage combination from the caecal effluent of a healthy woman vol.3, pp.None, 2010, https://doi.org/10.7717/peerj.1061
  10. Inhalation Study of Mycobacteriophage D29 Aerosol for Mice by Endotracheal Route and Nose-Only Exposure vol.29, pp.5, 2016, https://doi.org/10.1089/jamp.2015.1233
  11. Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa vol.52, pp.2, 2010, https://doi.org/10.1016/j.ajme.2015.05.002
  12. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S . aureus (MRSA) Mediated Orthopaedic Device Related Infections vol.11, pp.6, 2010, https://doi.org/10.1371/journal.pone.0157626
  13. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections vol.12, pp.7, 2010, https://doi.org/10.1371/journal.pone.0179245
  14. Preparation and characterization of gentamycin sulfate-impregnated gelatin microspheres/collagen-cellulose/nanocrystal scaffolds vol.75, pp.1, 2010, https://doi.org/10.1007/s00289-017-2020-4
  15. Bacteriophages To Sensitize a Pathogenic New Delhi Metallo β-Lactamase-Positive Escherichia coli to Solar Disinfection vol.52, pp.24, 2018, https://doi.org/10.1021/acs.est.8b04501
  16. Characterization and Genomic Analysis of Novel Bacteriophage ΦCS01 Targeting Cronobacter sakazakii vol.29, pp.5, 2010, https://doi.org/10.4014/jmb.1812.12054
  17. Phage therapy efficacy: a review of the last 10 years of preclinical studies vol.46, pp.1, 2010, https://doi.org/10.1080/1040841x.2020.1729695
  18. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses vol.69, pp.2, 2010, https://doi.org/10.1099/jmm.0.001141
  19. Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: Klebsiella pneumoniae vol.9, pp.1, 2020, https://doi.org/10.1128/ecosalplus.esp-0029-2019
  20. Isolation and Characterization of a Novel Phage for Controlling Multidrug-Resistant Klebsiella pneumoniae vol.8, pp.4, 2020, https://doi.org/10.3390/microorganisms8040542
  21. Identification of a newly isolated lytic bacteriophage against K24 capsular type, carbapenem resistant Klebsiella pneumoniae isolates vol.10, pp.None, 2010, https://doi.org/10.1038/s41598-020-62691-8
  22. Animal Models of Phage Therapy vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.631794
  23. Bacteriophage Treatment Rescues Mice Infected with Multidrug-Resistant Klebsiella pneumoniae ST258 vol.12, pp.1, 2010, https://doi.org/10.1128/mbio.00034-21
  24. Use of Customized Bacteriophages in the Treatment of Chronic Nonhealing Wounds: A Prospective Study vol.20, pp.1, 2021, https://doi.org/10.1177/1534734619881076