Characterization of an Antimicrobial Substance-producing Pseudomonas sp. BCNU 2001

항생물질을 생산하는 Pseudomonas sp. BCNU 2001 균주의 특성

  • Yang, Uk-Hee (Interdisciplinary Program in Biotechnology & Department of Biology, Changwon National University) ;
  • Choi, Hye-Jung (Interdisciplinary Program in Biotechnology & Department of Biology, Changwon National University) ;
  • Ahn, Cheol-Soo (Cho-A Pharm. Co. LTD.) ;
  • Jeong, Yong-Kee (Department of Biotechnology, Dong-A University) ;
  • Kim, Dong-Wan (Department of Microbiology, Changwon National University) ;
  • Joo, Woo-Hong (Interdisciplinary Program in Biotechnology & Department of Biology, Changwon National University)
  • 양욱희 (창원대학교 생명공학협동과정 및 생물학과) ;
  • 최혜정 (창원대학교 생명공학협동과정 및 생물학과) ;
  • 안철수 (조아제약(주)) ;
  • 정영기 (동아대학교 생명공학과) ;
  • 김동완 (창원대학교 미생물학과) ;
  • 주우홍 (창원대학교 생명공학협동과정 및 생물학과)
  • Received : 2010.04.27
  • Accepted : 2010.09.08
  • Published : 2010.09.28

Abstract

Strain BCNU 2001 was isolated from soil samples collected from Tea-baek Mountain area. The biochemical characteristics and 16S ribosomal RNA gene sequences of the isolate revealed that the strain belonged to the Pseudomonas aeruginosa. The supernatants had an antimicrobial effect on various kind of bacteria and fungi. Especially BCNU 2001 was able to greatly inhibit the growth of Micrococcus luteus, Proteus mirabilis, Proteus vulgaris, and Aspergillus niger, and its inhibition zone was measured as 18.5 mm against Micrococcus luteus, 19.0mm against Proteus mirabilis, 17.0mm against Proteus vulgaris, and 13.5 mm against Aspergillus niger, respectively. Hexane and dichloromethane extracts of BCNU 2001 exhibited significant activity against bacteria, and dichloromethane and ethylacetate extracts showed significant activity against fungi. Pseudomonas strain BCNU 2001 was also determined to have antimicrobial peptide against various microorganisms including Gram positive bacteria, Gram negative bacteria and fungi. The obtained results may provide preliminary support for the usefulness of Pseudomonas strain BCNU 2001.

본 연구팀은 태백산 지역에서 토양 시료들을 채취하여 다양한 균주들을 분리 탐색하는 과정에서 BCNU 2001 균주를 분리하였다. 분리균주의 생화학적 특징과 16S 리보좀 RNA 유전자 염기서열 분석 결과, 분리균주가 Pseudomonas aeruginosa에 속함이 확인되었다. 분리균주 BCNU 2001의 상등액은 다양한 세균과 진균에 대해 항균활성이 있었으며 특히 분리균주 BCNU 2001는 Micrococcus luteus, Proteus mirabilis, Proteus vulgaris, 그리고 Aspergillus niger의 생육을 크게 저해할 수 있었으며, Micrococcus luteus, Proteus mirabilis, Proteus vulgaris, 그리고 Aspergillus niger에 대하여 각각 18.5mm, 19.0mm, 17.0mm 그리고 13.5mm 크기의 저해환을 나타내었다. 분리균주 BCNU 2001의 핵산 분획물과 디클로로메탄 분획물은 세균에 대해 높은 항균력을 보였으며 디클로로메탄 분획물과 에틸아세테이트 분획물은 진균에 대해 높은 항균력을 보였다. 또한 Pseudomonas sp. BCNU 2001 균주는 그람양성 세균, 그람음성 세균 그리고 진균을 포함한 다양한 미생물들에 대하여 항균력이 있는 항균 펩타이드를 가지고 있음이 확인되었다. 실험을 통하여 얻은 결과는 Pseudomonas sp. BCNU 2001 균주의 유용성에 대한 예비적인 기초를 제공한다.

Keywords

References

  1. Arima, K., H. Imanaka, M. Kousaka, A. Fukuda, and G. Tamura. 1964. Pyrrolnitrin a new antibiotic substance, produced by Pseudomonas. Agric. Bio. Chem. 28: 575-576. https://doi.org/10.1271/bbb1961.28.575
  2. Baltz, R. H. 1997. Lipopeptide antibiotics produced by Streptomyces roseosporus and Streptomyces fradiae. pp. 415-435. In W. R. Strohl. (eds.), Biotechnology of Antibiotics, Marcel Dekker, New York.
  3. Bax, R. P., R. Anderson, J. Crew, P. Fletcher, T. Johnson, E. Kaplan, B. Knaus, K. Kristinsson, M. Malek, and L. Strandberg. 1998. Antibiotic resistance-what can we do? Nature Med. 4: 545-546. https://doi.org/10.1038/nm0598-545
  4. Berdy, J. 2005. Bioactive microbial metabolites. J. Antibiot. 58: 1-26. https://doi.org/10.1038/ja.2005.1
  5. Bonfiglio, G., G. Russo, and G. Nicoletti. 2002. Recent developments in carbapenems. Expert. Opin. Investig. Drugs. 11: 529-544. https://doi.org/10.1517/13543784.11.4.529
  6. Chopra, I., L. Hesee, and A. J. O!Neill. 2002. Exploiting current understanding of antibiotic action for the discovery of new drugs. J. Appl. Microbiol. 92: 4S-15S. https://doi.org/10.1046/j.1365-2672.92.5s1.13.x
  7. Debono, M., B. J Abbott, R. M. Molloy, D. S. Fukuda, A. H. Hunt, V. M. Daupert, F. T. Counter, J. L. Ott, C. B. Carrell, and L. C. Howard. 1988. Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). J. Antibiot. 41: 1093-1105. https://doi.org/10.7164/antibiotics.41.1093
  8. de Weger, L. A., R. van Boxtel, B. der Burg, R. A. Gruters, F. P. Geels, B. Schippers, and B. Lugtenberg. 1986. Siderophores and outer membrane proteins of antagonistic, plant-growth-stimulating, root-colonizing Pseudomonas spp. J. Bacteriol. 165: 585-594.
  9. Douthwaite, S. 2001. Structure-activity relationships of ketolides versus macrolides. Clin. Microbiol. Infect. 7: 11-17.
  10. Dunstan, G. H., C. Avignone-Rossa, D. Langley, and M. E. Bushell. 2000. The Vancomycin biosynthetic pathway is induced in oxygen-limited Amycolatopsis orientalis (ATCC 19795) cultures that do not produce antibiotic. Enzym. Microbial Technol. 27: 502-510. https://doi.org/10.1016/S0141-0229(00)00238-6
  11. El-Enshasy, H. A., N. A. Mohamed, M. A. Farid, and A. I. El-Diwany. 2008. Improvement of erythromycin production by Saccharopolyspora erythraea in molasses based medium through cultivation medium optimization. Bioresour. Technol. 99: 4263-4268. https://doi.org/10.1016/j.biortech.2007.08.050
  12. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39: 783-791. https://doi.org/10.2307/2408678
  13. Finch, R. 2002. Bacterial resistance-the clinical challenge. Clin. Microbiol. Infect. 8: 21-32. https://doi.org/10.1046/j.1469-0691.8.s.3.3.x
  14. Fritza, E., A. Fekete, J. Lintelmann, P. Schmitt-Kopplin, and R. U. Meckenstock. 2009. Isolation of two Pseudomonas strains producing pseudomonic acid A. Syst. Appl. Microbiol. 32: 56-64. https://doi.org/10.1016/j.syapm.2008.11.001
  15. Gillespie, D. E., S. F. Brady, A. D. Bettermann, N. P. Cianciotto, M. R. Liles, M. R. Rondon, J. Clardy, and R. M. Goodman. 2002. Isolation of Antibiotics Turbomycin A and B from a Metagenomic Library of Soil Microbial DNA. Appl. Environ. Microbiol. 68: 4301-4306. https://doi.org/10.1128/AEM.68.9.4301-4306.2002
  16. Hendlin, D., E. O. Stapley, M. Jackson, H. Wallick, A. K. Miller, F. J. Wolf, T. W. Miller, L. Chaiet, F. M. Kahan, E. L. Foltz, H. B. Woodruff, J. M. Mata, S. Hernandez, and S. Mochales. 1969. Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166: 122-123. https://doi.org/10.1126/science.166.3901.122
  17. Howell, C. R. and R. D. Stipanovic. 1980. Suppression of Pythium ultimum-induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathol. 70: 712-715. https://doi.org/10.1094/Phyto-70-712
  18. Isnansetyo, A. and Y. Kamei. 2009. Bioactive substrances produced by marine isolates of Pseudomonas. J. Ind. Microbiol. Biotechnol. 36: 1239-1248. https://doi.org/10.1007/s10295-009-0611-2
  19. Kreig, N. R. 1984. Gram-negative Aerobic rods and cocci. pp. 141-198. In Kreig, N. R. and J. G. Holt. (eds.), Bergey's Manual of Systematic Bacteriology, vol. 1. Williams & Wilkins, Baltimore.
  20. Kunin, C. M. 1993. Resistance to antimicrobial drugs-a worldwide calamity. Ann. Intern. Med. 118: 557-561. https://doi.org/10.7326/0003-4819-118-7-199304010-00011
  21. Lakaye, B., A. Dubus, S. Lepase, S. Groslambert, and J. M. Frere. 1999. When drug inactivation renders the target irrelevant to antibiotic resistance: a case story with betalactams. Mol. Microbiol. 31: 89-101. https://doi.org/10.1046/j.1365-2958.1999.01150.x
  22. Lim, T. H., J. M. Lee, T. H. Chang, and B. J. Cha. 2000. Antifungal activity and identification of an actinomycetes strain isolates from mummified peaches. Kor. J. Appl. Microbiol. Biotechnol. 28: 161-166.
  23. Moise, P. and J. Schentag. 2000. Vancomycin treatment failures in Staphylococcus aureus lower respiratory tract infections. Int. J. Antimicrob. Agents. 16: S31-S34.
  24. Nielsen, T. H., C. Christophersen, U. Anthoni, and J Sorensen. 1999. Viscosinamide a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol. 86: 80-90.
  25. Nielsen, T. H., C. Thrane, C. Christophersen, U. Anthoni, and J. Sorensen. 2000. Structure, production, characteristics and fungal antagonism of tensin -a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. Appl. Microbiol. 89: 992-1001. https://doi.org/10.1046/j.1365-2672.2000.01201.x
  26. Pelaez, F. 2006. The historical delivery of antibiotics from microbial natural products-Can history repeat?. Biochem. Pharmacol. 71: 981-990. https://doi.org/10.1016/j.bcp.2005.10.010
  27. Perez, C., M. Pauli, and P. Bazerque. 1990. An antibiotics assay by agar well diffusion method. Acta Biol. Med. Exp. 15: 113-115.
  28. Rodriguez, M., L. E. Nunez, A. F. Brana, C. Mendez, J. A. Salas, and G. Blanco. 2008. Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya. Mol. Microbiol. 69: 633-645. https://doi.org/10.1111/j.1365-2958.2008.06312.x
  29. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  30. Slininger, P. J., K. D. Burkhead, D. A. Schisler, and R. J. Bothast. 2000. Isolation, identification, and accumulation of 2-acetamidophenol in liquid cultures of the wheat take all biocontrol agent Pseudomonas fluorescens 2-9. Appl. Microbiol. Biotechnol. 54: 376-381. https://doi.org/10.1007/s002530000409
  31. Sneath, P. H. A. 1986. Endospore-forming Gram-positive rods and cocci. pp. 1104-1139. In Sneath, P. H. A., N. S. Mair., M. E. Sharpe, and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology, vol. 2. Williams & Wilkins, Baltimore.
  32. Stapley, E. O., D. Hendlin, J. M. Mata, M. Jackson, H. Wallick, S. Hernandez, S. Mochales, S. A. Currie, and R. M. Miller. 1969. Phosphonomycin. I. Discovery and in vitro biological characterization. Antimicrob. Agents. Chemother. 9: 284-290.
  33. Sutherland, R., R. J. Boon, K. E. Griffin, P. J. Masters, B. Slocombe, and A. R. White. 1985. Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob. Agents Chemother. 27: 495-498. https://doi.org/10.1128/AAC.27.4.495
  34. Therrien, C. and R. C Levesque. 2000. Molecular basis of antibiotic resistance and beta-lactamase inhibition by mechanism- based inactivators: perspectives and future directions. FEMS Microbiol. Rev. 24: 251-262.
  35. Valan Arasu, M., V. Duraipandiyan, P. Agastian, and S. Ignacimuthu. 2009. In vitro antimicrobial activity of Streptomyces spp. ERI-3 isolated from Western Ghats rock soil (India). J. Myc. Med. 19: 22-28. https://doi.org/10.1016/j.mycmed.2008.12.002
  36. Walsh, C. 2003. Where will the new antibiotics come from? Nat. Rev. Microbiol. 1: 65-70. https://doi.org/10.1038/nrmicro727
  37. Watson, D., J. MacDermot, R. Wilson, P. J. Cole, and G. W. Taylor. 1986. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur. J. Biochem. 159: 309-313. https://doi.org/10.1111/j.1432-1033.1986.tb09869.x
  38. Waksman, S. A. and A. T. Heinrich. 1943. The nomenclature and classification of the Actinomycetes. J. Bacteriol. 46: 337-341.
  39. Xiong, Y. Q., M. R. Yeaman, and A. S. Bayer. 2000. Linezolid: a new antibiotic. Drugs Today. 36: 631-639.
  40. Zgoda, J. R. and J. R. Porter. 2001. A convenient microdilutionmethod for screening natural products against bacteria and fungi. Pharmaceut. Biol. 39: 221-225. https://doi.org/10.1076/phbi.39.3.221.5934