Browse > Article

Characterization of an Antimicrobial Substance-producing Pseudomonas sp. BCNU 2001  

Yang, Uk-Hee (Interdisciplinary Program in Biotechnology & Department of Biology, Changwon National University)
Choi, Hye-Jung (Interdisciplinary Program in Biotechnology & Department of Biology, Changwon National University)
Ahn, Cheol-Soo (Cho-A Pharm. Co. LTD.)
Jeong, Yong-Kee (Department of Biotechnology, Dong-A University)
Kim, Dong-Wan (Department of Microbiology, Changwon National University)
Joo, Woo-Hong (Interdisciplinary Program in Biotechnology & Department of Biology, Changwon National University)
Publication Information
Microbiology and Biotechnology Letters / v.38, no.3, 2010 , pp. 255-262 More about this Journal
Abstract
Strain BCNU 2001 was isolated from soil samples collected from Tea-baek Mountain area. The biochemical characteristics and 16S ribosomal RNA gene sequences of the isolate revealed that the strain belonged to the Pseudomonas aeruginosa. The supernatants had an antimicrobial effect on various kind of bacteria and fungi. Especially BCNU 2001 was able to greatly inhibit the growth of Micrococcus luteus, Proteus mirabilis, Proteus vulgaris, and Aspergillus niger, and its inhibition zone was measured as 18.5 mm against Micrococcus luteus, 19.0mm against Proteus mirabilis, 17.0mm against Proteus vulgaris, and 13.5 mm against Aspergillus niger, respectively. Hexane and dichloromethane extracts of BCNU 2001 exhibited significant activity against bacteria, and dichloromethane and ethylacetate extracts showed significant activity against fungi. Pseudomonas strain BCNU 2001 was also determined to have antimicrobial peptide against various microorganisms including Gram positive bacteria, Gram negative bacteria and fungi. The obtained results may provide preliminary support for the usefulness of Pseudomonas strain BCNU 2001.
Keywords
Tea-baek Mountain; antibacterial activity; antifungal activity; broad-spectrum antibiotics;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Dunstan, G. H., C. Avignone-Rossa, D. Langley, and M. E. Bushell. 2000. The Vancomycin biosynthetic pathway is induced in oxygen-limited Amycolatopsis orientalis (ATCC 19795) cultures that do not produce antibiotic. Enzym. Microbial Technol. 27: 502-510.   DOI   ScienceOn
2 Watson, D., J. MacDermot, R. Wilson, P. J. Cole, and G. W. Taylor. 1986. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur. J. Biochem. 159: 309-313.   DOI   ScienceOn
3 Lakaye, B., A. Dubus, S. Lepase, S. Groslambert, and J. M. Frere. 1999. When drug inactivation renders the target irrelevant to antibiotic resistance: a case story with betalactams. Mol. Microbiol. 31: 89-101.   DOI   ScienceOn
4 Kreig, N. R. 1984. Gram-negative Aerobic rods and cocci. pp. 141-198. In Kreig, N. R. and J. G. Holt. (eds.), Bergey's Manual of Systematic Bacteriology, vol. 1. Williams & Wilkins, Baltimore.
5 Rodriguez, M., L. E. Nunez, A. F. Brana, C. Mendez, J. A. Salas, and G. Blanco. 2008. Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya. Mol. Microbiol. 69: 633-645.   DOI   ScienceOn
6 Nielsen, T. H., C. Thrane, C. Christophersen, U. Anthoni, and J. Sorensen. 2000. Structure, production, characteristics and fungal antagonism of tensin -a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. Appl. Microbiol. 89: 992-1001.   DOI   ScienceOn
7 Pelaez, F. 2006. The historical delivery of antibiotics from microbial natural products-Can history repeat?. Biochem. Pharmacol. 71: 981-990.   DOI   ScienceOn
8 Lim, T. H., J. M. Lee, T. H. Chang, and B. J. Cha. 2000. Antifungal activity and identification of an actinomycetes strain isolates from mummified peaches. Kor. J. Appl. Microbiol. Biotechnol. 28: 161-166.
9 Moise, P. and J. Schentag. 2000. Vancomycin treatment failures in Staphylococcus aureus lower respiratory tract infections. Int. J. Antimicrob. Agents. 16: S31-S34.
10 Isnansetyo, A. and Y. Kamei. 2009. Bioactive substrances produced by marine isolates of Pseudomonas. J. Ind. Microbiol. Biotechnol. 36: 1239-1248.   DOI   ScienceOn
11 Howell, C. R. and R. D. Stipanovic. 1980. Suppression of Pythium ultimum-induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathol. 70: 712-715.   DOI
12 Kunin, C. M. 1993. Resistance to antimicrobial drugs-a worldwide calamity. Ann. Intern. Med. 118: 557-561.   DOI   ScienceOn
13 Finch, R. 2002. Bacterial resistance-the clinical challenge. Clin. Microbiol. Infect. 8: 21-32.   DOI   ScienceOn
14 Fritza, E., A. Fekete, J. Lintelmann, P. Schmitt-Kopplin, and R. U. Meckenstock. 2009. Isolation of two Pseudomonas strains producing pseudomonic acid A. Syst. Appl. Microbiol. 32: 56-64.   DOI   ScienceOn
15 Gillespie, D. E., S. F. Brady, A. D. Bettermann, N. P. Cianciotto, M. R. Liles, M. R. Rondon, J. Clardy, and R. M. Goodman. 2002. Isolation of Antibiotics Turbomycin A and B from a Metagenomic Library of Soil Microbial DNA. Appl. Environ. Microbiol. 68: 4301-4306.   DOI   ScienceOn
16 Hendlin, D., E. O. Stapley, M. Jackson, H. Wallick, A. K. Miller, F. J. Wolf, T. W. Miller, L. Chaiet, F. M. Kahan, E. L. Foltz, H. B. Woodruff, J. M. Mata, S. Hernandez, and S. Mochales. 1969. Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166: 122-123.   DOI
17 de Weger, L. A., R. van Boxtel, B. der Burg, R. A. Gruters, F. P. Geels, B. Schippers, and B. Lugtenberg. 1986. Siderophores and outer membrane proteins of antagonistic, plant-growth-stimulating, root-colonizing Pseudomonas spp. J. Bacteriol. 165: 585-594.
18 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39: 783-791.   DOI   ScienceOn
19 Douthwaite, S. 2001. Structure-activity relationships of ketolides versus macrolides. Clin. Microbiol. Infect. 7: 11-17.
20 El-Enshasy, H. A., N. A. Mohamed, M. A. Farid, and A. I. El-Diwany. 2008. Improvement of erythromycin production by Saccharopolyspora erythraea in molasses based medium through cultivation medium optimization. Bioresour. Technol. 99: 4263-4268.   DOI   ScienceOn
21 Zgoda, J. R. and J. R. Porter. 2001. A convenient microdilutionmethod for screening natural products against bacteria and fungi. Pharmaceut. Biol. 39: 221-225.   DOI   ScienceOn
22 Debono, M., B. J Abbott, R. M. Molloy, D. S. Fukuda, A. H. Hunt, V. M. Daupert, F. T. Counter, J. L. Ott, C. B. Carrell, and L. C. Howard. 1988. Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). J. Antibiot. 41: 1093-1105.   DOI
23 Bax, R. P., R. Anderson, J. Crew, P. Fletcher, T. Johnson, E. Kaplan, B. Knaus, K. Kristinsson, M. Malek, and L. Strandberg. 1998. Antibiotic resistance-what can we do? Nature Med. 4: 545-546.   DOI   ScienceOn
24 Berdy, J. 2005. Bioactive microbial metabolites. J. Antibiot. 58: 1-26.   DOI   ScienceOn
25 Bonfiglio, G., G. Russo, and G. Nicoletti. 2002. Recent developments in carbapenems. Expert. Opin. Investig. Drugs. 11: 529-544.   DOI   ScienceOn
26 Chopra, I., L. Hesee, and A. J. O!Neill. 2002. Exploiting current understanding of antibiotic action for the discovery of new drugs. J. Appl. Microbiol. 92: 4S-15S.   DOI   ScienceOn
27 Waksman, S. A. and A. T. Heinrich. 1943. The nomenclature and classification of the Actinomycetes. J. Bacteriol. 46: 337-341.
28 Xiong, Y. Q., M. R. Yeaman, and A. S. Bayer. 2000. Linezolid: a new antibiotic. Drugs Today. 36: 631-639.
29 Sutherland, R., R. J. Boon, K. E. Griffin, P. J. Masters, B. Slocombe, and A. R. White. 1985. Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob. Agents Chemother. 27: 495-498.   DOI   ScienceOn
30 Arima, K., H. Imanaka, M. Kousaka, A. Fukuda, and G. Tamura. 1964. Pyrrolnitrin a new antibiotic substance, produced by Pseudomonas. Agric. Bio. Chem. 28: 575-576.   DOI
31 Therrien, C. and R. C Levesque. 2000. Molecular basis of antibiotic resistance and beta-lactamase inhibition by mechanism- based inactivators: perspectives and future directions. FEMS Microbiol. Rev. 24: 251-262.
32 Valan Arasu, M., V. Duraipandiyan, P. Agastian, and S. Ignacimuthu. 2009. In vitro antimicrobial activity of Streptomyces spp. ERI-3 isolated from Western Ghats rock soil (India). J. Myc. Med. 19: 22-28.   DOI   ScienceOn
33 Walsh, C. 2003. Where will the new antibiotics come from? Nat. Rev. Microbiol. 1: 65-70.   DOI   ScienceOn
34 Nielsen, T. H., C. Christophersen, U. Anthoni, and J Sorensen. 1999. Viscosinamide a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol. 86: 80-90.
35 Baltz, R. H. 1997. Lipopeptide antibiotics produced by Streptomyces roseosporus and Streptomyces fradiae. pp. 415-435. In W. R. Strohl. (eds.), Biotechnology of Antibiotics, Marcel Dekker, New York.
36 Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
37 Slininger, P. J., K. D. Burkhead, D. A. Schisler, and R. J. Bothast. 2000. Isolation, identification, and accumulation of 2-acetamidophenol in liquid cultures of the wheat take all biocontrol agent Pseudomonas fluorescens 2-9. Appl. Microbiol. Biotechnol. 54: 376-381.   DOI   ScienceOn
38 Sneath, P. H. A. 1986. Endospore-forming Gram-positive rods and cocci. pp. 1104-1139. In Sneath, P. H. A., N. S. Mair., M. E. Sharpe, and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology, vol. 2. Williams & Wilkins, Baltimore.
39 Stapley, E. O., D. Hendlin, J. M. Mata, M. Jackson, H. Wallick, S. Hernandez, S. Mochales, S. A. Currie, and R. M. Miller. 1969. Phosphonomycin. I. Discovery and in vitro biological characterization. Antimicrob. Agents. Chemother. 9: 284-290.
40 Perez, C., M. Pauli, and P. Bazerque. 1990. An antibiotics assay by agar well diffusion method. Acta Biol. Med. Exp. 15: 113-115.