Transient Behaviors of a Two-Stage Biofilter Packed with Immobilized Microorganisms when Treating a Mixture of Odorous Compounds

미생물 포괄고정화 담체를 이용한 이단 바이오필터에서의 오염부하량 동적 부하변동시 복합악취 제거효율 변화특성

  • NamGung, Hyeong-Kyu (Department of Civil & Environmental Engineering, Sejong University) ;
  • Shin, Seung-Kyu (Department of Civil & Environmental Engineering, Sejong University) ;
  • Hwang, Sun-Jin (School of Architectural Civil & Environmental Engineering, Department of Environmental Science and Engineering, Center for Environmental Studies, Kyunghee University) ;
  • Song, Ji-Hyeon (Department of Civil & Environmental Engineering, Sejong University)
  • 남궁형규 (세종대학교 토목환경공학과) ;
  • 신승규 (세종대학교 토목환경공학과) ;
  • 황선진 (경희대학교 건설환경공학부) ;
  • 송지현 (세종대학교 토목환경공학과)
  • Received : 2010.04.21
  • Accepted : 2010.12.16
  • Published : 2010.12.31

Abstract

A two-stage biofilter was constructed and utilized to determine the removal efficiency when treating dynamic loading of a mixture of odorous compounds including benzene, toluene, p-xylene, ammonia and hydrogen sulfide. A yeast strain, Candida tropicalis, and a sulfur oxidizing bacterial (SOB) strain, Acidithiobacillus caldus sp., were immobilized in polyurethane media and packed in the two-stage biofilter. The experiment of dynamic loading variation was composed of (1) stepwise loading variation of all the odorous compounds (total EC test), (2) stepwise loading variation of each odorous compound, and (3) intermittent loading variation with 2-day-off and 3-day-on. The total EC test showed that the maximum elimination capacity was $61\;g/m^3/hr$ for total VOCs, and 5.2 and $9.1\;g/m^3/hr$ for ammonia and hydrogen, respectively. In addition, the inhibition between VOCs was observed when the loading of each individual VOC was varied. Especially the stepwise increase in toluene loading resulted in decreases of benzene and p-xylene removal efficiencies about 30% and 25%, respectively. However, the inhibition between organic and inorganic compounds was not observed. The intermittent loading variation with 2-day-off and 3-day-on showed that greater than 95% of the overall removal efficiency was restored in two days after the loading resumed. Consequently, the two-stage biofilter packed with immobilized microorganisms showed advantages over conventional biofilters for the simultaneous treatment of the mixture of organic and inorganic odorous compounds.

본 연구에서는 휘발성 유기화합물의 분해능력을 가진 Candida tropicalis와 황화수소 분해능력을 가진 황산화균을 적용하여 이단 바이오필터를 운전하였으며, 각각의 미생물은 스폰지형 담체에 포괄 고정시켜 사용되었다. 이단 바이오필터에는 벤젠, 톨루엔, 자일렌, 암모니아, 황화수소 등의 복합악취를 유입하며 분해 특성을 파악하였고, 특히 오염부하량 단계변동에 대한 바이오필터의 분해능을 확인하였다. 오염부하량 단계변동은 총유입부하량 단계변동(total EC test), 개별 악취물질 유입부 하량 단계변동(individual chemical EC test), 간헐 동적부하 변동(2 days off & 3 days on) 순으로 수행되었다. 총유입부하량 단계변동 실험결과 TVOC와 암모니아, 황화수소의 최대분해능은 각각 61, 5.2, $9.1\;g/m^3/hr$로 확인되었으며, 개별악취물질 유입부하량 단계변동시에는 휘발성 유기화합물질 상호간의 분해능 간섭이 일어나는 것을 확인할 수 있었다. 벤젠 부하량 변동시 톨루엔과 p-자이렌 모두 제거효율에 영향을 받았으며, 톨루엔의 부하량 단계변동시에는 벤젠과 p-자이렌이 각각 30%와 25% 이상의 제거효율의 하락이 일어나는 것을 확인할 수 있었다. 하지만 무기악취와 유기악취간의 상호 분해능 간섭은 일어나지 않는 것을 확인할 수 있었다. 2일간 악취물질의 유입을 중단한 후 다시 악취물질의 유입을 재개하였을 때, 3일 이내에 95% 이상의 악취물질 제거능 회복율을 보였다. 이러한 부하변동 실험결과로 미생물 포괄고정 담체를 적용한 이단 바이오필터가 유 무기 악취의 동시제거에 많은 장점을 가지고 있음을 확인할 수 있었다.

Keywords

References

  1. Byeon, S. H., Lee, J. G. and Kim, J. K., "Patterns of offensive odor compounds according to blocks in shiwha industrial complex," J. KSEE, 31(12), 1161-1168(2009).
  2. Pal, R., Kim, K. H., Hong, Y. J. and Jeon, E. C., "The pollution status of atmospheric carbonyls in a highly industrialized area," J. Hazard. Mater., 153, 1122-1135(2008). https://doi.org/10.1016/j.jhazmat.2007.09.068
  3. Kennes, C. and Veiga, M. C., "Bioreactors for waste gas treatment," Kluwer Academic Publishers(2001).
  4. 김대승, "산업현장의 악취 제거 기술과 최근동향," 한국공 업화학회 환경기술심포지엄, 111-134(2000).
  5. Won, Y. S., "Biotreatment technologies for air pollution control," Clean Technol., 13(1), 1-15(2007).
  6. Auria, R., Aycaguer, A. C. and Devinny, J. S., "Influence of water content on degradation rates for ethanol in biofiltration," J. Air Waste Manage. Assoc., 48(1), 65-70(1998). https://doi.org/10.1080/10473289.1998.10463667
  7. Son, H. K., "The treatment of volatil eorganic compounds using a pilot-scale biofilter," J. Environ.l Health, 30(3), 245-252(2004).
  8. Shareefdeen, Z. and Singh, A., "Biotechnology for odor and air pollution control," Springer(2005).
  9. Kinney, K. A., Loehr, R. C. and Corsi R. L., "Vapor-phase bioreactors: avoiding problems through better design and operation," Environ. Prog., 18, 222-230(1999). https://doi.org/10.1002/ep.670180319
  10. Xi, J., Hu, H. Y. and Qian, Y., "Effect of operating conditions on long-term performance of a biofilter treating gaseous toluene: Biomass accumulation and stable-run time estimation," Biochem. Eng. J., 31(2), 165-172(2006). https://doi.org/10.1016/j.bej.2006.07.002
  11. Lee, H. S., Chu, D. S. and Jung, J. O., "Characteristics of biofilter support media for the odor control," J. Environ. Health Sci., 34(1), 101-107(2008).
  12. Chang, Y. K. and Chu, L., "A simple method for cell disruption by immobilization of lysozyme on the extrudate shaped NaY zeolite," Biotechnol. Eng. J., 35, 37-47(2007).
  13. Lopez, A., Lazaro, N. and Marques, M., "The interphase technique : a simple method of cell immobilization in gelbeads," J. Microbiol. Methods, 30, 231-234(1997). https://doi.org/10.1016/S0167-7012(97)00071-7
  14. van Groenestijn, J. W., van Heiningen, W. N. M. and Kraakman, N. J. R., "Biofilters based on the action of fungi," Water Sci. Technol., 44(9), 227-232(2001).
  15. van Groenestijn, J. W. and Liu, J. X., "Removal of alphapinene from gases using biofilters containing fungi," Atmos. Environ., 36(35), 5501-5508(2002). https://doi.org/10.1016/S1352-2310(02)00665-9
  16. Woertz, J. R., Kinney, K. A. and McIntosh, N. D. P., "Removal of toluene in a vapor-phase bioreactor containing a strain of the dimorphic black yeast Exophiala lecanii-corni," Biotechnol. Bioeng., 75(5), 550-558(2001). https://doi.org/10.1002/bit.10066
  17. Sawvel, R. A., Kim, B. and Alvarez, P. J. J., "Removal of volatile organic compounds at extreme shock loading using a scale-up pilot rotating drum biofilter," J. Air Waste Manage. Assoc., 58, 1407-1414(2008). https://doi.org/10.3155/1047-3289.58.11.1407
  18. Atoche, J. C. and Moe, W. M., "Treatment of MEK and toluene mixtures in biofilters: Effect of operating strategy on performance during transient loading," Biotechnol. Bioengineer., 86(4), 468-481(2004). https://doi.org/10.1002/bit.20064
  19. Zarook, S. M., Shaikh, A. A., Ansar, Z. and Baltzis, B. C., "Biofiltration of volatile organic compound (VOC) mixtures under transient conditions," Chem. Engineer. Sci., 52(21,22), 4135-4142(1997). https://doi.org/10.1016/S0009-2509(97)00256-X
  20. Park, S. J. and Cho, K. S., "Removal of hydrogen sulfide using porous ceramic biofilter inoculated with sulfur oxidizing bacteria," J. Kor. Soc. Atmos. Environ., 15(5), 649-655(1999).
  21. Jang, H. S., Jeong, M. Y., Shin, S. K., Song, J. H. and Hwang, S. J., "Substrate interactions in the biodegradation of volatile organic compounds by a yeast strain," J. Korean Soc. Water and Wastewater, 22(2), 187-193(2008).
  22. Strauss, J. M., Riedel, K. J. and du Plessis, C. A., "Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized biofilter," Appl. Microbiol. Biotechnol., 64, 855-861(2004). https://doi.org/10.1007/s00253-003-1483-4
  23. Moe, W. M. and Qi, B., "Performance of fungal biofilter treating gas-phase solvent mixtures during intermittent loading," Water Res., 38, 2259-2268(2004). https://doi.org/10.1016/j.watres.2004.02.017