• Title/Summary/Keyword: Microorganism Inactivation

Search Result 37, Processing Time 0.021 seconds

Inactivation Rate of Enterococci and Total Coliforms in Fresh Water and Sea Water (해수 및 담수에서 장구균과 총대장균군의 불활성화)

  • Kim, Jongmin;Jheong, Weonhwa;Choi, Heejin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.136-141
    • /
    • 2009
  • Inactivation rates between enterococci and total coliforms were compared in order to find the suitability of enterococci as an indicator microorganism under various experiment conditions - freshwater and/or seawater, indoor and/or outdoor conditions. In case of indoor laboratory experiments, inactivation rates of enterococci ($k_D$: 0.050~0.082) were faster than those of total coliforms ($k_D$: 0.034~0.045) in freshwater matrix. In seawater matrix, however, survival rate of enterococci was longer than that of total coliforms at two out of three experiments in indoor condition. When incubated in outdoor conditions, enterococci were inactivated significantly more rapidly than total coliforms both in freshwater and seawater matrices. With these results, enterococci appear to be less suitable than total coliforms in terms of inactivation rates.

Comparative Study on Disinfection Efficiency of Chlorine and Chloramine in the Distribution Systems (배·급수계통에서 유리염소와 클로라민의 소독효과에 관한 비교연구)

  • Choi, Yong-Il;Nam, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.82-88
    • /
    • 1999
  • This study was to evaluate disinfection efficiency of chlorine and chloramine as secondary disinfectants in the distribution systems. Indicator organism, HPC in the suspended and attached were measured for copper, galvanized steel, PVC, and carbon steel pipes. For suspended microorganism, the PVC pipe was markedly dense among the assessed pipe materials. The attached microorganism was markedly equivalent roughness of pipe materials. In copper and galvanized pipes, chloramine was more effective that free chlorine to disinfect suspended microorganism in the contact time of 2 hours. The contact time for the 99% inactivation of suspended microorganism by chloramine was longer than that of free chlorine. Regardless of pipe materials, chloramine was effective on both disinfection efficiency and 99% inactivation time for attached microorganism. In conclusion, chloramine which is good disinfectant for long contact time was recommended as secondary disinfectant in distribution system.

  • PDF

Effect of Salt Contents on High Pressure Inactivation of Microorganism in Doenjang (염 함량이 된장의 초고압 살균에 미치는 영향)

  • Mok, Chulkyoon
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.318-323
    • /
    • 2011
  • High pressure processing (HPP) technology was applied to inactivate the microorganisms in Doenjang (soybean paste) and the effects of salt concentration on the HPP inactivation of microorganisms were analyzed. The microorganisms in Doenjang containing low salt content showed greater sensitivity to HPP than those with high salt content. HPP inactivation effects decreased as salt concentration of Doenjang increased. The HPP sensitivity decreased in the order of fungi, yeasts, bacteria in terms of microorganism type. The HPP of Doenjang at 6,500 atm for 40 min inactivated most yeasts and fungi, indicating that the HPP technology was applicable to control the microorganisms in Doenjang, especially with a low level of salt.

Comparative Study on Some Factors Affecting the Oxyfluorfen Inactivation in Soil (Oxyfluorfen의 토양중(土壤中) 불활성화(不活性化)에 관여(關與)하는 수종요인(數種要因)의 비교연구(比較硏究))

  • Kim, D.K.;Lee, J.M.;Guh, J.O.;Lee, K.
    • Korean Journal of Weed Science
    • /
    • v.6 no.2
    • /
    • pp.146-153
    • /
    • 1986
  • The study was conducted to estimate the oxyfluorfen inactivation proceeding which have or have not organism and soil microorganism in soil by biological testing method, under the different condition of soil class and temperature. The results obtained in this experiment are as follows: 1. Under the condition of high temperature, chemical`s inactivation resulted in early and the extent of it`s inactivation was increased. 2. The extent of inactivation was more rapid in the sandy soil than in the clay. 3. Among the soil class, the differentiation of the day of demand with inactivation at the 50% and 95% was significantly increased low temperature period. 4. In sandy soil, inactivation`s differentiation by adding organism was found, but by adding microorganism was not found. 5. In clay, chemical's inactivation was increased rather by adding microorganism than by adding organism. 6. Among under the condition of soil class, by adding organism and micrrorganism, chemical`s inactivation (Probit growing period at 50% and 95%) was shorted. And among the soil class, it was shortter sandy soil than clay or silty loam soil.

  • PDF

Effect of High Pressure Low Temperature Treatment on the Inactivation of Microorganism in Raw Milk

  • Kim, Jee-Yeon;Hong, Geun-Pyo;Park, Sung-Hee;Kim, Jeong-Mee;Min, Sang-Gi
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2006.05a
    • /
    • pp.277-280
    • /
    • 2006
  • This study was carried out to investigate the effect of HPLT on the inactivation rates of microorganisms in raw milk depending on the pressurization time and temperature. Raw milk samples were submitted to HPLT of 200 MPa at -4, 4, 12 and $20^{\circ}C$, respectively. Inactivation increased with pressurization time and HPLT of microorganisms at 200 MPa was time dependent at any temperature. At sub-zero temperature of $-4^{\circ}C$, high pressure pasteurization was the most effective in inactivating microorganisms.

  • PDF

Microbial Inactivation of Grains Used in Saengshik by Corona Discharge Plasma Jet (코로나방전플라즈마제트를 이용한 생식용 곡류의 미생물 저감)

  • Youn, Geum-A;Mok, Chulkyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.70-74
    • /
    • 2015
  • Inactivation of microorganisms in grains used for saengshik, a formulated health food, was attempted by corona discharge plasma jet (CDPJ). The initial microbial counts of the grains were in the range of $1.7{\times}10^3-9.9{\times}10^5CFU/g$. The CDPJ-inactivation effect was increased with electric current in the range of 1-1.5 A. Regarding span length between the tips of the electrodes and the treatment surface, the highest inactivation effect was observed at 25 mm. The inactivation pattern fitted well to the Singh-Heldman model. Bacteria were more labile to the CDPJ inactivation than yeasts and molds. Among tested grains, white rice showed the highest sterility followed by pressed barley and brown rice. Despite the inactivation by plasma, the thiobarbituric acid content of the grains remained unchanged over 10 min of treatment. Our results indicated the potential of the CDPJ treatment to improve the hygiene of saengshik products with no remarkable changes in lipid quality.

A Study on the Biofouling Control in Membrane Processes Using High Voltage Impulse (고전압 임펄스를 적용한 막분리 공정에서의 생물막 오염 제어에 관한 연구)

  • Lee, Ju-Hun;Kim, Jun-Young;Yi, Chin-Woo;Lee, June-Ho;Chang, In-Soung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.67-75
    • /
    • 2011
  • Although membrane technologies are widely applied to the water and wastewater treatment processes, strategy for the control of membrane biofouling is strongly required. In this study, a possibility of control of membrane biofouling using HVI(High Voltage Impulse) was verified based on the inactivation of microorganisms by the HVI. The HVI system was consisted of power supply, voltage amplifier, impulse generator and disinfection chamber and the model microorganism was E. coli. When 15[kV/cm] of electric fields was applied to the E. coli solution, inactivation of the microorganism was found. A possibility of the control of membrane biofouling using HVI was verified with experiments of membrane filtration with and without exposure of the HVI to biomass solution. Another membrane filtration experiments with the contaminated membranes by E. coli solution were carried out and indicate that the HVI could be used as an alternative method for membrane biofouling control. A series of simulation of the electric fields between electrodes and microorganisms was carried out for the visualization of the disinfection that showed where the electric fields are formed.

Treatment of Microencapsulated ${\beta}$- Galactosidase with Ozone : Effect on Enzyme and Microorganism

  • Kwak, H.S.;Lee, J.B.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.596-601
    • /
    • 2002
  • The present study was designed to examine the effect of ozone treatment in microencapsulated ${\beta}$-galactosidase on inactivation of the enzyme and sterilization of microorganism. The efficiency was the highest as 78.4% when the ratio of polyglycerol monostearate (PGMS) was 15:1. Activities of lactase remaining outside the capsule were affected by ozone treatment. With the increase of ozone concentration and duration of ozone treatment, the activity reduced significantly. In sensory aspect, with 2% microcapsule addition, no significant difference in sweetness was found compared with a market milk during 12 d storage. Above result indicated that the additional washing process of lactase was not necessary to inactivate the residual enzyme. In a subsequent study, the vegetative cells of microorganisms were completely killed with 10 ppm for 10 min treatment by ozone. The present study provides evidence that ozone treatment can be used as an inactivation and a sterilization process. In addition, these results suggest that acceptable milk products containing lactase microcapsules made by PGMS can be prepared with ozone treatment.

Effects of Aqueous Ozone Combined with Organic Acids on Microflora Inactivation in the Raw Materials of Saengsik

  • Bang, Woo-Suk;Eom, Young-Ran;Eun, Jong-Bang;Oh, Deog-Hwan
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.958-962
    • /
    • 2007
  • This study was conducted to determine the effects of microorganism inactivation using 3 ppm of aqueous ozone (AO), 1% citric acid, 1% lactic acid, and 1% acetic acid alone, as well as the combinations of AO and organic acid, for washing the raw materials of saengsik (carrot, cabbage, glutinous rice, barley) with or without agitation. The combination of AO and 1% of each organic acid significantly inactivated spoilage bacteria in both the vegetables and the grains (p<0.05). However, in the glutinous rice, no inhibitory effects were shown for total aerobic bacteria by using water, ozone, or the combination of AO with citric acid or lactic acid, without agitation. Microbial inactivation was enhanced with agitation in the grains, whereas dipping (no agitation) treatments showed better inhibitory effects in the vegetables than in the barley, suggesting that washing processes should take into account the type of food material.