초음파와 UV에 의한 페놀 분해 특성에 관한 연구

A Study on the Characteristics of Sonication Combined with UV in the Degradation of Phenol

  • 김성근 (서울대학교 보건대학원 환경보건학과) ;
  • 손현석 (서울대학교 보건대학원 환경보건학과) ;
  • 임종권 (서울대학교 보건대학원 환경보건학과) ;
  • 김지형 (고려대학교 사회환경시스템학과) ;
  • 조경덕 (서울대학교 보건대학원 환경보건학과)
  • Kim, Seong-Keun (Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Son, Hyun-Seok (Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Im, Jong-Kwon (Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Khim, Jee-Hyeong (School of Civil, Environmental, Architectural Engineering, Korea University) ;
  • Zoh, Kyung-Duk (Department of Environmental Health, School of Public Health, Seoul National University)
  • 투고 : 2010.02.12
  • 심사 : 2010.06.29
  • 발행 : 2010.07.31

초록

본 연구에서는 난분해성 물질인 페놀을 초음파와 자외선 광선(UV-C)을 이용하여 분해를 알아본 연구이다. 초음파, 자외선, 그리고 초음파와 자외선의 결합반응에서 주파수, 온도, 용액의 pH, 아르곤 가스 purging, 그리고 자외선 세기의 효과를 조사하였다. 초음파 단독 반응의 경우 pH 4, $5^{\circ}C$, 35kHz에서 360분 동안 30%의 페놀의 최적 분해효율을 보였다. 자외선(UV-C) 단독 반응의 경우 $19.3\;mW/cm^2$의 자외선 세기와 pH 4, $5^{\circ}C$에서 60분에 100%의 페놀 분해 효율을 보였다. 이에 반하여 초음파와 자외선의 결합반응에서는 동일 조건에서 45분 동안 페놀이 모두 제거되었다. 초음파와 자외선의 결합 반응에서 페놀은 자외선 강도가 $7.6\;mW/cm^2$일 때 360분 안에 $19.3\;mW/cm^2$일 때는 45분 안에 완전히 분해되었고, 각각의 분해 속도 상수는 $17.3{\times}10^{-3}\;min^{-1}$$138.1{\times}10^{-3}\;min^{-1}$이었다. 페놀의 분해반응에서 OH 라디칼의 scavenger로 작용하는 메탄올을 첨가하는 실험을 한 결과 초음파와 자외선 광선의 조합반응에서 페놀 분해의 주요인자는 OH 라디칼이라는 것을 확인할 수 있었다. 페놀 분해의 반응효율 비교는 초음파 + 광반응 조합반응 > 자외선 광선 단독 반응 > 초음파 단독 반응과 같이 확인되었다.

This study investigated the degradation of phenol using sonication and/or UV-C. The effects of frequency, temperature, pH in solution, argon purging, with UV intensity were estimated in sonication-only, UV-only, and the combined reaction of sonication with UV. The optimum condition for degrading phenol in the sonication-only reaction was 35 kHz, $5^{\circ}C$, and pH 4. As this condition approximately 30% degradation of phenol was achieved within 360 min. However, phenol in the UV-only at $19.3\;mw/cm^2$ under the same condition was completely degraded within 60 min. In the combined system of sonication with UV, the degradation of phenol was well fitted to first-order rate model, and phenol was completely degraded within 360 min and 45 min at UV intensity of $7.6\;mW/cm^2$($17.3{\times}10^{-3}\;min^{-1}$) and $19.3\;mW/cm^2$($138.1{\times}10^{-3}\;min^{-1}$), respectively. Adding methanol, as a radical scavenger, in the phenol degradation in the sonication reaction indicates that OH radical is a major factor in the degradation of phenol. The order of degradation efficiencies of phenol was in the order of as follows; combined reaction of sonication with UV > UV-only > sonication-only.

키워드

과제정보

연구 과제 주관 기관 : 한국과학재단

참고문헌

  1. Montizan, G. K., "WHO IPCS Environmental Health Criteria for Phenol," WHO, 161(1994).
  2. Reynolds, J, E, F., "Martindale : The Extra Pharmacopoeia," Royal Pharmaceutical Society, Pharmaceutical Press, London, 1310(1993).
  3. WHO IARC, "IARC monographs on the evaluation of carcinogenic risks to humans," 71(part 1, 2, 3), Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide(1999).
  4. Sadana, A. and Katzer, J. R., "Catalytic Oxidation of Phenol in Aqueous Solution," Ind. Engg. Chem. Fundam., 13, 127-134 (1974). https://doi.org/10.1021/i160050a007
  5. Ehrhardt, H. M. and Rehm, H. J., "Semicontinuous and continuous degradation of phenol by pseudomonas putida P8 on activated carbon," Microbiol. Biotechnol., 30(2), 312-317 (1989).
  6. Zilli, M., Converti, A., Lodi, A., Del Borghi, M. and Ferraiolo, G., "Phenol Removal from Waste Gases with a Biological filter by pseudomonas putida," Bioeng., 41(1), 693-699(1993). https://doi.org/10.1002/bit.260410703
  7. Warden, R. M. and Donaldson, T. L., "Dynamics of a Biological Fixed Film for Phenol Degradation in a Fluidized-Bed Bioreactor," Biotechnol. Bioeng., 30(4), 398-412(1986).
  8. Rajeshwar, K., "Photochemical strategies for abating environmental pollution," Chemistry & Industry, 17, 454-462(1996).
  9. Glaze, W. H. and Kang, J. W., "Advenced oxidation process for treating groundwater contaminated with TCE and PCE: Laboratory studies," J. AWWA, 80(5), 57-63(1988).
  10. Hung, H. and Hoffmann, M. R., "Kinetics and Mechanism of the Sonolytic Degradation of Chlorinated Hydrocarbons Frequency Effects," J. Phys. Chem., 103(15), 2734-2739(1999). https://doi.org/10.1021/jp9845930
  11. Thompson, L. H. and Doraiswamy, L. K., "Sonochemistry: science and engineering," Ind. Eng. Chem. Res., 38, 1215-1249(1999). https://doi.org/10.1021/ie9804172
  12. Psillakis, E., Goula, G. and Kalogerakis, N., Mantzavinos, D., "Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation," J. Hazard. Mater., 108, 95-102(2004). https://doi.org/10.1016/j.jhazmat.2004.01.004
  13. Petrier C., Lamy M. F., Francony A., Benahcene A. and David B. "Sonochemical degradation of phenol in dilute aqueous solutions-comparison of the reaction rate at 20 and 487 kHz," J. Phys. Chem., 98(41), 10514-10520(1994). https://doi.org/10.1021/j100092a021
  14. Chowdhury P. and Viraaraghavan T., "Sonochemcial degradation of chlorinated organic compound, phenolic compounds and organic dyes - A reivew," Sci. Total Environ., 407, 2474-2492(2009). https://doi.org/10.1016/j.scitotenv.2008.12.031
  15. Hao H., Chem Y., Wu M., Wang H., Yin Y. and Lu Z., "Sonochemistry of degrading p-chlorophenol in water by high frequency ultrasound," Ultrason. Sonochem., 11, 43-46(2004). https://doi.org/10.1016/S1350-4177(03)00114-7
  16. 박종성, 박소영, 오재일, 정상조, 이민주, 허남국, "초음파 주파수 및 반응조건 변화에 따른 나프탈렌 분해효율과 OH 라디칼의 발생량 비교", 대한환경공학회지, 31(2), 79-89(2009).
  17. Park, J. K., Hong, S. W. and Chang, W. S., "Degradation of polycyclic aromatic hydrocarbons by ultrasonic irradiation," Environ. Technol., 21, 1317-1323(2000). https://doi.org/10.1080/09593332108618162
  18. 손현석, 최석봉, Khan Eakalak, 조경덕, "1,4-dioxane의 초음파 처리 시 반응 온도와 부피의 영향", 대한환경공학회지, 27(10), 1114-1122(2005).
  19. Jiang Y., Pertier C. and Waite T. D., "Effect of pH on the ultrasonic degradation of ionic aromaticcompounds in aqueous solution," Ultrason. Sonochem., 9, 163-168(2002). https://doi.org/10.1016/S1350-4177(01)00114-6
  20. Nie, M., Wang, Q. and Qiu, G., "Enhancement of ultrasonically initiated emulsion polymerization rate using aliphatic alcohols as hydroxyl radical scavengers," Ultrason. Sonochem., 15(3), 222-226(2008). https://doi.org/10.1016/j.ultsonch.2007.03.010
  21. Mason, T. J., "Practical sonochemostry: user's guide to applications in chemical engineering," Ellis Horwood(1991).
  22. Suslick, K. S., "Sonochemistry," Science, 247, 1439-1445 (1990). https://doi.org/10.1126/science.247.4949.1439
  23. Price G. H., Ashokkumar M. and Grieser F., "Sonoluminescence quenching of organic compounds in aqueous solution: Frequency effects and implications for sonochemistry," J. Am. Chem. Soc., 126, 2755-2762(2004). https://doi.org/10.1021/ja0389624
  24. Lee J., Kentish S. E. and Ashokkumar M., "The Effect of Surface-Active Solutes on Bubble Coalescence in the Presence of Ultrasound," J. Phys. Chem. B, 109, 5095-5099 (2005). https://doi.org/10.1021/jp0476444
  25. Wayne, C. E. and Wayne, R. P., "Photochemistry," Oxford University Press, 21-22(1996).
  26. Buxton G. V., Greenstock W. P. and Helman, Ross A. B., "Critical review of rate constants for reactions of hydroxyl radical $(OH{\cdot}/H{\cdot})$ in Aqueous solution," J. Phys. Chem., 17, 513-886(1988).
  27. Dukkancıa, M. and Gunduz, G., "Ultrasonic degradation of oxalic acid in aqueous solutions," Ultrason. Sonochem., 13(6), 517-522(2006). https://doi.org/10.1016/j.ultsonch.2005.10.005