Removal of Chloramphenicol, Salicylic Acid and Ketoprofen using Various Oxidation Processes : Oxidation Kinetic Evaluation

다양한 산화공정을 이용한 수중의 Chloramphenicol, Salicylic Acid 및 Ketoprofen 의약물질 제거 : 산화 동력학 평가

  • 손희종 (부산광역시 상수도사업본부 수질연구소)
  • Received : 2009.03.04
  • Accepted : 2010.01.25
  • Published : 2010.02.28

Abstract

In order to evaluate a removal characteristic of chloramphenicol, salicylic acid and ketoprofen according to dose of oxidants, $Cl_2$, $O_3$ and $O_3/H_2O_2$ are used as oxidants in this study. In case of that $Cl_2$ is used for oxidizing harmaceuticals, chloramphenicol, salicylic acid and ketoprofen is not removed entirely at $Cl_2$ dose rang of 0.5~5.0 mg/L for 60 min. However, removal tendency of salicylic acid is so obviously at $Cl_2$ dose higher than 1.0 mg/L. In addition, as $Cl_2$ dose and contact time increase, the removal rate of salicylic acid is enhanced. When $O_3$ is used as oxidant, chloramphenicol and ketoprofen is not eliminated at $O_3$ dose range of 0.2~2.0 mg/L. On the contrary, 30~70% of salicylic acid is removed at $O_3$ dose of 1.0~5.0 mg/L. Only 30% removal of salicylic acid is achieved at contact time of 5 min, however, the removal rate is enhanced remarkably at contact time over 10 min. In experiments using $O_3/H_2O_2$ as an oxidant, we can find that $O_3/H_2O_2$ is much more effective than $O_3$ only for removal of 3 pharmaceuticals, and the efficiency is raised according to increase of $H_2O_2$ dose. On reaction rate constant and half-life of 3 pharmaceuticals depending on $Cl_2$, $O_3$ and $O_3/H_2O_2$ dose, experiments using $O_3/H_2O_2$ show that oxidation of pharmaceuticals is less effective as the $H_2O_2/O_3$ ratio increases to above pproximately 1.0 related to reaction rate constant. An oxidation of salicylic acid by $Cl_2$ and $O_3$ particularly has a comparatively high reaction rate constant comparing $O_3/H_2O_2$, and thus salicylic acid is easily eliminated in oxidation processes.

본 연구에서는 다양한 산화공정에서 chloramphenicol, salicylic acid 및 ketoprofen에 대한 제거특성을 평가하였다. 염소 투입농도에 따른 의약물질 3종의 제거특성을 살펴본 결과 chloramphenicol과 ketoprofen은 0.5~5.0 mg/L의 염소 투입농도에서 접촉시간 60분 동안 전혀 제거되지 않았으나 salicylic acid는 1.0 mg/L 이상의 염소 투입농도에서 제거경향이 뚜렷이 나타났며, 접촉시간 및 염소 투입농도가 증가할수록 제거율은 증가하였다. 오존 투입농도에 따른 의약물질 3종의 제거특성을 살펴본 결과 chloramphenicol과 ketoprofen은 0.2~2.0 mg/L의 오존 투입농도에서는 제거되지 않았으며, salicylic acid는 1.0~5.0 mg/L의 오존 투입농도에서 약 30~70%의 제거율을 보였다. 오존/과산화수소 투입농도별로 접촉시간에 따른 의약물질 3종의 제거특성을 살펴본 결과 오존단독 공정보다는 오존/과산화수소 공정에서의 제거율이 높았다. 염소, 오존 및 오존/과산화수소 투입농도별 의약물질 3종에 대한 산화분해 속도상수와 반감기를 살펴본 결과 염소, 오존 단독 투입에 비해 오존/과산화수소 공정에서의 산화분해 속도상수가 큰 것으로 나타났으며, 과산화수소/오존의 비가 1 이상에서는 산화분해 속도상수의 증가율이 둔화되었다. Salicylic acid의 경우는 염소와 오존처리에 의해서도 비교적 큰 산화분해 속도상수를 나타내어 산화공정에서 쉽게 제거가 가능하였다.

Keywords

References

  1. Daughton, C. G. and Ternes, T. A., "Pharmaceuticals and personal care products in the environment: agents of subtle change?,"Environ. Health Perspect., 107, 907-942(1999). https://doi.org/10.1289/ehp.99107s6907
  2. Halling-Sorensen, B., Nielson, S. N., Lanzky, P. E. and Ingerslev, L. F.," Occurrence, fate and effects of pharmaceutical substances in the environment-a review"Chemosphere, 36(2), 357-393(1998). https://doi.org/10.1016/S0045-6535(97)00354-8
  3. Hileman, B., "Troubled waters: EPA, USGS try to quantify prevalence, risks of compounds from drugs, personal care products,"Chem. Eng. News, 79, 31-33(2001).
  4. Heberer, T., "Occurrence, fate and removal of pharmaceutical residues in the aquatic environment: a review of recent research data,"Toxicol. Lett., 131, 5-17(2002). https://doi.org/10.1016/S0378-4274(02)00041-3
  5. Boxall, A. B. A., Kolpin, D., Halling-Sorensen, B. and Tolls, J., "Are veterinary medicines causing environmental risks," Environ. Sci. Technol., 36, 286-294(2003).
  6. Wollenberger, L., Halling-Sorensen, B. and Kusk, K. O.," Acute and chronic toxicity of veterinary antibiotics to Daphnia magna,"Chemosphere, 40(7), 723-730(2000). https://doi.org/10.1016/S0045-6535(99)00443-9
  7. Chee-Sanford, J. C., Aminov, R. I., Krapac, I. J., Garrigues- Jeanjean, N. and Mackie, R. I., "Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities,"Appl. Environ. Microbiol., 67, 1494-1502(2001). https://doi.org/10.1128/AEM.67.4.1494-1502.2001
  8. K mmerer, K.," Significance of antibiotics in the environment," Jour. Antimicrobial Chemotherapy, 52, 5-7(2003). https://doi.org/10.1093/jac/dkg293
  9. 국립환경과학원, 환경 중 의약물질 분석방법 연구 및 노출실태조사, (2006).
  10. Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S. V. and Baumann, W.," Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil,"Sci. Total Environ., 225, 135-141(1999). https://doi.org/10.1016/S0048-9697(98)00339-8
  11. Choi, K. J., Kim, S. G., Kim, C. W. and Kim, S. H., "Determination of antibiotic compounds in water by on-line," Chemosphere, 66, 977-984(2007). https://doi.org/10.1016/j.chemosphere.2006.07.037
  12. Kim, S. D., Cho, J., Kim, I, S., Vanderford, B. and Snyder, S., "Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters," Water Res., 41, 1013-1021(2007). https://doi.org/10.1016/j.watres.2006.06.034
  13. Snyder, S., Adham, S., Redding, A., Cannon, F., DeCarolis, J., Oppenheimer, J., Wert, E. and Yoon, Y., "Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals,"Desalination, 202, 156-181(2007). https://doi.org/10.1016/j.desal.2005.12.052
  14. Kimura, K., Hara, H. and Watanabe, Y., "Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs),"Desalination, 178, 135-140(2005). https://doi.org/10.1016/j.desal.2004.11.033
  15. Li, K., Yediler, A., Yang, M., Schulte-Hostede, S. and Wong, M. H., "Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products,"Chemosphere, 72, 473-478(2008). https://doi.org/10.1016/j.chemosphere.2008.02.008
  16. Huber, M. M., Korhonen, S., Ternes, T. A. and von Gunten, U., "Oxidation of pharmaceuticals during water treatment with chlorine dioxide,"Water Res., 39(15), 3607-3617(2005). https://doi.org/10.1016/j.watres.2005.05.040
  17. Choi, K. J., Kim, S. G., Son, H. J., Roh, J. S., Yoo. P. J. and Kim, S. H., "Comparison of oxidation methods and GAC adsorption in antibiotics removal,"Proceedings of 4th IWA Conference on Oxidation Technologies for Water & Wastewater Treatment, Goslar, Germany, (2006).
  18. Pereira, V. J., Linden, K. G. and Weinberg, H. S.," Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water,"Water Res., 41, 4413-4423(2007). https://doi.org/10.1016/j.watres.2007.05.056
  19. Chatzitakis, A., Berberidou, C., Paspaltsis, I., Kyriakou, G., Sklaviadis, T. and Poulios, I., "Photocatalytic degradation and drug activity reduction of chloramphenicol,"Water Res., 42, 386-394(2008). https://doi.org/10.1016/j.watres.2007.07.030
  20. Guinea, E., Arias, C., Cabot, P. L., Garrido, J. A., Rodriguez, R. M., Centellas, F. and Brillas, E.", Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide,"Water Res., 42, 499-511(2008). https://doi.org/10.1016/j.watres.2007.07.046
  21. Esplugas, S., Bila, D. M., Krause, L. G. and Dezotti, M., "Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents,"J. Hazard. Mater., 149, 631-642(2007). https://doi.org/10.1016/j.jhazmat.2007.07.073
  22. Yurdakal, S., Loddo, V., Augugliaro, V., Berber, H., Palmisano, G. and Palmisano, L., "Photodegradation of pharmaceutical drugs in aqueous $TiO_2$ suspensions: mechanism and kinetics," Catalysis Today, 129, 9-15(2007). https://doi.org/10.1016/j.cattod.2007.06.044
  23. Gomez, M. j., Mart nnez Bueno, M. J., Ag era, A., Hernando, M. D., Fern ndez-Alba, A. R. and Mezcua, M., "Evaluation of ozone-based treatment processes for wastewater containing microcontaminants using LC-QTRAP-MS and LC-TOF/MS," Water Sci. Technol., 57(1), 41-48(2008). https://doi.org/10.2166/wst.2008.809
  24. Suh, J. H. and Mohseni, M., "A study on the relationship between biodegradability enhancement and oxidation of 1,4- dioxane using ozone and hydrogen peroxide,"Water Res., 38, 2596-2604(2004). https://doi.org/10.1016/j.watres.2004.03.002
  25. Yang, S. H. and Carlson, K.," Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes", Water Res., 37, 4645-4656(2003). https://doi.org/10.1016/S0043-1354(03)00399-3
  26. Nakada, N., Shinohara, H., Murata, A., Kiri, K., Managaki, S., Sato, N. and Takada, H., "of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant,"Water Res., 41, 4373-4382(2007). https://doi.org/10.1016/j.watres.2007.06.038
  27. Hoigne, J. and Bader, H., "Rate constants of reactions of ozone with organic and inorganic compounds in water-II," Water Res., 17(2), 185-194(1983). https://doi.org/10.1016/0043-1354(83)90099-4
  28. 손희종, 류동춘, 김영웅," 회전 드럼형 광촉매 산화장치를 이용한 비스페놀-A 제거,"한국화학공학회지, 39(4), 493-500 (2001).