• Title/Summary/Keyword: 산화공정

Search Result 2,118, Processing Time 0.034 seconds

O$_3$/H$_2$O$_2$와 O$_3$/Catalyst 고급산화공정에서 1,4-dioxane의 제거 특성 연구

  • Park, Jin-Do;Seo, Jung-Ho;Lee, Hak-Sung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2005.11a
    • /
    • pp.192-194
    • /
    • 2005
  • O$_3$/H$_2$O$_2$ 고급산화공정에서 1,4-D의 제거는 반응시간에 따라 완만하게 감소하였으나, O$_3$/catalyst 고급산화공정에서는 전체 제거량의 약 50${\sim}$75%가 반응 초기 5분 내에 제거되어 O$_3$/H$_2$O$_2$ 공정에 비해 초기 반응속도가 현저히 빠른 것을 알 수 있었다. O$_3$/H$_2$O$_2$ 고급산화공정은 ${\Delta}$TOC/${\Delta}$ThOC의 비는 0.09${\sim}$0.40으로 나타났으며, O$_3$/catalyst 고급산화공정에서는 ${\Delta}$TOC/${\Delta}$ThOC의 비가 0.68${\sim}$0.98로 나타나 O$_3$/catalyst 고급산화공정이 O$_3$/H$_2$O$_2$ 고급산화공정에 비해 유기물의 산화력이 우수한 것으로 확인되었다.

  • PDF

ILD CMP 공정에서 실리콘 산화막의 기계적 성질이 Scratch 발생에 미치는 영향

  • Jo, Byeong-Jun;Gwon, Tae-Yeong;Kim, Hyeok-Min;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.23-23
    • /
    • 2011
  • Chemical-Mechanical Planarization (CMP) 공정이란 화학적 반응 및 기계적인 힘이 복합적으로 작용하여 표면을 평탄화하는 공정이다. 이러한 CMP 공정은 반도체 산업에서 회로의 고집적화와 다층구조를 형성하기 위하여 도입되었으며 반도체 제조를 위한 필수공정으로 그 중요성이 강조되고 있다. 특히 최근에는 Inter-Level Dielectric (ILD)의 형성과 Shallow Trench Isolation (STI) 공정에서실리콘 산화막을 평탄화하기 위한 CMP 공정에 대해 연구가 활발히 이루어지고 있다. 그러나 CMP 공정 후 scratch, pitting corrosion, contamination 등의 Defect가 발생하는 문제점이 존재한다. 이 중에서도 scratch는 기계적, 열적 스트레스에 의해 생성된 패드의 잔해, 슬러리의 잔유물, 응집된 입자 등에 의해 표면에 형성된다. 반도체 공정에서는 다양한 종류의 실리콘 산화막이 사용되고 gks이러한 실리콘 산화막들은 종류에 따라 경도가 다르다. 따라서 실리콘 산화막의 경도에 따른 CMP 공정 및 이로 인한 Scratch 발생에 관한 연구가 필요하다고 할 수 있다. 본 연구에서는 scratch 형성의 거동을 알아보기 위하여 boronphoshposilicate glass (BPSG), plasma enhanced chemical vapor deposition (PECVD) tetraethylorthosilicate (TEOS), high density plasma (HDP) oxide의 3가지 실리콘 산화막의 기계적 성질 및 이에 따른 CMP 공정에 대한 평가를 실시하였다. CMP 공정 후 효율적인 scratch 평가를 위해 브러시를 이용하여 1차 세정을 실시하였으며 습식세정방법(SC-1, DHF)으로 마무리 하였다. Scratch 개수는 Particle counter (Surfscan6200, KLA Tencor, USA)로 측정하였고, 광학현미경을 이용하여 형태를 관찰하였다. Scratch 평가를 위한 CMP 공정은 실험에 사용된 3가지 종류의 실리콘 산화막들의 경도가 서로 다르기 때문에 동등한 실험조건 설정을 위해 동일한 연마량이 관찰되는 조건에서 실시하였다. 실험결과 scratch 종류는 그 형태에 따라 chatter/line/rolling type의 3가지로 분류되었다 BPSG가 다른 종류의 실리콘 산화막에 비해 많은 수에 scratch가 관찰되었으며 line type이 많은 비율을 차지한다는 것을 확인하였다. 또한 CMP 공정에서 압력이 증가함에 따라 chatter type scratch의 길이는 짧아지고 폭이 넓어지는 것을 확인하였다. 본 연구를 통해 실리콘 산화막의 경도에 따른 scratch 형성 원리를 파악하였다.

  • PDF

Sol-Gel법을 적용한 투명전도 산화막 제조 공정

  • Park, Yeong-Ung;Lee, In-Hak;Jeong, Seong-Hak;Im, Sil-Muk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.108.2-108.2
    • /
    • 2012
  • 디스플레이는 유리 기판이나 폴리머 기판에 진공장비를 통한 투명전극(TCO)를 증착시키고, 그 위에 발광체와 유전체를 쌓는 방식으로 공정을 진행한다. 특히 투명전극(TCO)의 경우 진공장비를 이용하여 증착을 진행하는데, 이러한 생산 공정은 고가의 생산 장비 및 재료와 공정의 복잡화에 따른 생산단가 상승등으로 인한 경쟁력 저하 문제가 야기되고 있다. 본 연구에서는 투명전극(TCO)의 주재료인 인듐 주석 산화물(ITO)를 배제하고, 아연 산화물(ZnO)에 알루미늄을 도핑한 투명전극을 습식방식으로 형성하는 기술에 관한 것이다. Sol-gel법을 이용한 용액 제조와 ZnO에 Al을 도핑하여, 후 열처리하여 유리 기판에 $1{\mu}m$두께를 갖는 투명전극 기판을 제작하였다. 각 공정에 있어서 조성변화가 투명전극 층에 미치는 영향에 대해서 조사 하였다. 이와 같은 제조 공정에는 Sol-gel 용액 제조, 박막형성에 이은 후처리로 이루어지는 단순공정이 적용되어, 기존 투명전도 산화막 공정에 대비하여 단순 공정으로 이뤄지며, 진공 설비를 배제함으로써 기존공정 대비 경쟁력을 갖게 된다.

  • PDF

LiCl 용융염 전해환원 공정 희토류원소 산화물의 화학적 거동

  • Park, Byeong-Heung;Choe, In-Gyu;Jeong, Myeong-Su;Heo, Jin-Mok
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.11a
    • /
    • pp.346-346
    • /
    • 2009
  • 산화물 형태 사용후핵연료의 효율적 처분 혹은 재활용을 위한 연구 가운데, 고온의 LiCl 용융염 중에서 전해환원하여 금속으로 환원시킨 후, 환원된 금속을 고온의 LiCl-KCl 용융염에서 전해정련하는 연구가 국내외적으로 활발하게 진행되고 있다. 전해환원을 위해 일정 농도 $Li_2O$가 LiCl 용융염에 첨가되며 $Li_2O$ 농도가 높으면 반응 재질의 부식성이 크게 증가하므로 일반적으로 우라늄 산화물은 1wt% 이하의 $Li_2O$ 농도에서 전해환원 된다. 우라늄 산화물의 전해환원 전위는 $Li_2O$의 전해환원 전위 보다 표준 상태를 기준으로 공정온도인 650 $^{\circ}C$ 에서 약 70 mV 정도 낮기 때문에 전해환원 과정에서 $Li_2O$ 의 환원으로 Li 금속이 생성될 가능성이 있으며 우라늄 산화물은 대부분 직접 전해환원 되지만 일부 Li에 의해 화학적으로 환원되기도 한다. 전해환원 공정에서 환원되지 않은 희토류 산화물은 전해정련 공정에서 $UCl_3$와 반응하여 $UO_2$를 생성시켜 공정 효율을 떨어뜨린다. 따라서 전해환원 공정에서 가능하연 최대한 희토류 산화물을 금속으로 환원시키는 조건을 찾아내는 것이 바람직하고 이를 위해서 우선 전해환원 공정에서 희토류 산화물의 화학적 거동의 이해가 요구된다. 본 연구에서 열역학적 검토를 통하여 희토류 산화물의 환원 조건을 조사한 결과 희토류 산화물은 매운 낮은 $Li_2O$ 농도에서 Li에 의해 환원되고, 1wt% 이하의 $Li_2O$ 농도에서는 Sc와 Lu의 산화물이 $Li_2O$와 복합산화물을 형성하고 이들 복합산화물은 Li에 의해 환원되지 않는 것으로 나타났다. 또한 희토류 원소 별로 희토류 원소 산화물의 Li에 의한 환원 조건으로서 평형상태에서의 $Li_2O$ 농도 즉 환원 임계 $Li_2O$ 농도를 실험적으로 측정하였으며 1wt% $Li_2O$ 농도 이하에서 열역학적 해석과 동일하게 Sc와 Lu만이 복합산화물을 형성하여 Li에 의해 직접환원 되지 않는 것으로 관찰되었다.

  • PDF

Effect of experiment process on corrosion damage of metallic material for nuclear energy instrument with chemical decontamination process (화학제염 시 시험공정이 원전기기용 금속 재료의 부식손상에 미치는 영향)

  • Jeong, Gwang-Hu;Yang, Ye-Jin;Park, Il-Cho;Lee, Jeong-Hyeong;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.136-136
    • /
    • 2017
  • 화학제염 기술은 산화제, 환원제, 금속이온, 무기산등이 혼합되어 있는 화학용액을 사용하여 원전기기 계통 내부에 생성된 고방사능 준위의 산화막과 오염물질을 제거하는 기술이다. 원전의 해체 및 유지보수에 있어 방사능 피복저감을 위한 필수적인 기술이다. 현재 원전 해체 산업은 잠재성이 높은 고부가가치 창출 산업으로 주목을 받고 있다. 원전 보유국의 경우, 기존 상용 제염기술과는 차별성 있는 제염기술을 확보하고자 노력하고 있다. 기존의 공정과 비교하여 공정비용 및 시간을 감소시킬 수 있어야 할 뿐만 아니라, 화학용액에 의한 원전 계통 금속 부품의 부식 및 손상을 최소화해야 한다. 금속 부품이 화학약품에 의한 부식손상을 받는다면 금속 부품의 수명 및 재활용 가치가 감소하기 때문에, 화학제염 기술 적용에 있어 용액에 대한 재료의 건전성 평가가 사전에 필히 이루어져야 한다. 본 연구에서는 원전 냉각재 펌프용 재료로 주로 사용되는 Stainless 304강을 시험편으로 선정하여, 화학제염 시험공정 3가지에 대한 부식손상 특성을 규명하였다. 산화공정은 과망간산($HMnO_4$) 용액을 공통으로 사용하였으며, 산화공정 종료 후 환원공정은 각 시험공정에 따라 시험공정 1은 옥살산($H_2C_2O_4$) 2000ppm, 시험공정 2는 옥살산($H_2C_2O_4$)1500ppm + 시트르산($H_8C_6O_7$)500ppm, 그리고 시험공정 3은 옥살산($H_2C_2O_4$) 3000ppm 용액을 각각 투입하여 수행하였다. 산화, 환원공정을 1Cycle로 하여, 각 시험공정 별로 총 5Cycle을 실시하였다. 각 시험공정 Cycle종료 후 시험편을 취외하여 무게감량측정, SEM(Scanning electron microscope) 분석, 3D현미경분석 그리고 타펠분극 실험을 실시하였다. 각 분석결과를 토대로 하여, Stainless 304강에 대한 화학제염 시 모델별 시험공정에 따른 부식특성을 규명하였다.

  • PDF

균일막 형성을 위한 항공기 부품용 타이타늄의 양극산화 최적 공정

  • Lee, Da-Yeong;Han, A-Yeong;Jeong, Na-Gyeom;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.66.2-66.2
    • /
    • 2018
  • 금속의 양극산화 공정(anodizing)은 전해질 내 금속에 인위적으로 전위를 가해 금속 표면에 얇은 산화막(oxide layer)을 형성하여 금속의 내식성, 내마모성을 증가시키는 공정이다. 타이타늄은 가볍고 단단하여 산업분야에 유용하게 사용되며 이와 같은 양극산화 공정을 통해 내식성, 내마모성을 크게 높일 수 있다. 본 연구에서는 항공기 부품용 타이타늄의 최적 양극산화 조건을 찾기 위해 전압의 파형, 전해액의 조성에 따라 양극산화 실험을 진행하였다. SEM, AFM, EDS, 분광측색계, 색채색차계 등을 이용하여 각 조건에 해당하는 타이타늄의 산화막($Tio_2$)의 두께, crack 형태, pore 형태, 균일도, 표면 조도, 내전압, 색 수치를 분석하였다. 그 결과 전압 DC 140 V, 주성분이 KOH $Na_3PO_4{\cdot}12H_2O$인 전해액으로 이루어진 양극산화 조건에서 가장 균일하고 색 재현성이 우수한 타이타늄의 산화막($Tio_2$)을 형성하였다.

  • PDF

고도산화방법 조합에 따른 염색폐수의 COD 및 색도 제거

  • 이상호;김선희;배준삼
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2004.05a
    • /
    • pp.320-323
    • /
    • 2004
  • 두가지 처리방법을 연계처리하여 실험한 결과 펜톤산화를 전처리로 적용하여 실험한 경우가 COD와 Color의 제거면에서 더 높은 처리효율을 보이고 있으며 본 연구의 실험 목적인 RFP상의 수질기준을 만족하였다. 배출수 수질 기준이 강화된 RFP상의 수질기준을 만족하기 위한 고도산화방법의 연계처리방법 중 오존산화와 펜톤산화를 조합한 결과 유기물과 색도를 고루 제거하는 펜톤산화를 전처리 공정으로 적용하고 유기물의 제거보다는 색도제거에 더 효율적인 오존처리 공정을 후처리로 둔 조합공정이 더 적합한 것으로 판단된다.

  • PDF

Simple Passivation Technology by Thermal Oxidation of Aluminum for AlGaN/GaN HEMTs

  • Kim, Jeong-Jin;An, Ho-Gyun;Bae, Seong-Beom;Mun, Jae-Gyeong;Park, Yeong-Rak;Im, Jong-Won;Min, Byeong-Gyu;Yun, Hyeong-Seop;Yang, Jeon-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.176-176
    • /
    • 2012
  • 본 연구는 GaN 기반의 전자소자의 표면 패시베이션 방법으로 열산화 공정을 이용한 알루미늄산화막 패시베이션 공정에 대하여 연구하였다. 결정질의 알루미늄산화물은 경도가 크고 화학적으로 안정적이기 때문에 외부 오염에 대한 소자 표면을 효과적으로 보호할 수 있으며, 열적안정성이 뛰어나 공정중 또는 공정 후의 고온 환경에서의 열 손상이 적은 장점을 가진다. 결정질 알루미늄산화막($Al_2O_3$)을 소자 표면에 형성하기 위해서 일반적으로 TMA (trimethlyaluminium)와 오존($O_3$)가스를 이용한 ALD 공정법이 사용되고 있으나 공정 비용이 비싸고 열산화막에 비해 전자 trapping이 많이 발생하여 전자이동도가 저하되는 단점이 있어, 본 연구에서는 열산화 공정을 이용하여 소자의 전기적 특성 저하를 발생시키지 않는 알루미늄산화막 패시베이션을 수행하였다. 실험에 사용된 기판은 AlGaN/GaN 이종접합 구조가 증착된 HEMT 제작용 기판을 사용하였으며 TLM 구조를 제작하여 소자의 채널 면저항 및 절연영역간 누설전류 특성을 확인하였다. TLM 구조가 제작된 샘플 위에 알루미늄을 100 ${\AA}$ 두께로 소자위에 증착하고 $O_2$ 분위기에서 약 $525{\sim}675^{\circ}C$ 온도로 3분간 열처리하여 알루미늄 산화막을 형성한 후 $950^{\circ}C$ 온도로 $N_2$ 분위기에서 30초간 안정화열처리 하여 안정한 알루미늄 산화막 패시베이션을 형성하였다. 알루미늄산화막 패시베이션 후 소자의 절연영역 사이의 누설전류는 패시베이션 전과 비슷한 크기를 나타냈고 패시베이션 후 채널의 면저항이 패시베이션 전에 비해 약 20% 감소한 것을 확인하였다. 또한 패시베이션된 소자와 패시베이션되지않은 소자에 대해 $900^{\circ}C$ 온도로 30초간 열처리한 결과 패시베이션 되지 않은 소자는 74%만큼 채널 면저항이 증가하였으며, 절연영역 누설전류가 다섯오더 크기로 증가한 반면 알루미늄산화막 패시베이션한 소자는 단지 13%의 채널 면저항의 증가를 나타내었고 절연영역 누설전류는 100배 감소한 값을 보여 알루미늄산화막 패시베이션이 소자의 열적 안정성을 향상시키는 것을 확인하였다.

  • PDF

백상지 공정의 폐쇄화에 따른 초지계내 전분 축적현상에 대한 시뮬레이션 연구

  • 이학래;안현견
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.11a
    • /
    • pp.138-138
    • /
    • 2000
  • 국내의 백상지 공정은 공정에 투입되는 청수의 양을 줄이면서 동시에 폐수 배출 양을 감 소시키기 위해 많은 노력을 하고 있다. 공정으로 유입되는 청수의 양과 처리된 폐수의 양을 줄이기 위한 방법으로 PDFCpolydisk filter)를 도입하여 백수를 여과하여 showertf sealing 에 재사용하고 있으며 공정수 재활용에 따른 유기 물질과 무기물질의 계 내로의 축적을 방 지하기 위한 효과적인 폐수 처리방법을 모색하고 있다. 일반적으로 청수를 백수로 대체할 경우 공정 백수 내에 TDSCtotal dissolved solid), T TSSCtotal suspended solid), CODCchemical oxygen demand), 전기 전도도와 칼숨 경 도 등이 증가되며 음이온성 저해 물질Canionic trash)이 증가하여 보류 및 지력증강용 첨가제의 효율 을 떨어뜨릴 뿐만 아니라 마모, 슬라엄, 펠트 막힘 등의 문제를 유발하게 된다고 알려져 있다. 청수를 백수로 대체함에 따라 생기는 이러한 문제를 해결하면서 효율적인 청수 절약 방안 을 세우기 위해서는 무엇보다도 문제를 유발하는 원인 물질의 축적 양을 예측하는 것이 중 요하다고 판단된다. 본 연구는 백상지 공정의 폐쇄화 수준이 높아짐에 따른 공정 백수 내의 유기물질의 축적 현상을 분석하는 것올 목적으로 하였다. 이를 위해 산화전분을 유기물질의 대표하는 물질로 설정하였다. 이는 백상파지와 함께 초지계 내로 유업되는 산화전분은 파지의 4%를 차지할 정도로 유입량이 많을 뿐만 아니라 음이온성을 띄고 있어서 지료에 홉착율이 낮고 양이온성 고분자의 효율을 저해하며 슬라임의 원인이 되기도 하는 물질이기 때문이다. 산화전분의 축적 현상을 분석하기 위하여 pilot 설비 상세 설계도를 참고하여 하루 생산량 이 16 T/D이고 백상파지만이 파지로 유입되는 백상지 생산 공정을 모델로하였으며, 산화전 분의 홉착과 용출 모델을 만들어 상용 시율레이터를 이용하여 시율레이션 프로그램을 작성 하였다. 시률레이션 프로그램에서는 장섬유 미세섬유, 충전제를 지료 구성 성분으로 설정하였고 O Orccotoma 등이 사용한 일과 보류도 모델을 응용하여 보류도 모델올 만들었다. 산화전분은 백상파지에 포함된 형태로만 초지계 내로 유입되며 백상파지가 해리되는 과정에서 완전히 백수에 용출되었다가 지료 구성 성분에 홉착되는 것으로 가정하였다. 지료 홉착된 산화전분 의 양은 용존 산화전분 총량에 비례하는 것으로 가정하였으며, 이 때 이 비례상수를 전분 홉착율이라 정의하였다. 시율레이션 결과, 공정 폐쇄화가 진행됨에 따라 백수 내의 산화 전분 농도는 증가하게 되 며, 폐쇄화 수준이 높아질수록 백수 내 전분 농도의 증가량은 더 높아졌다. 백수 내의 전분 농도의 증가량은 백상파지 첨가량이 증가할수록, 표면 사이징 양이 증가할수록 커졌다.

  • PDF

스퍼터링 공정 중 알루미늄 타겟 오염이 알루미늄 산화막 증착에 미치는 영향

  • Lee, Jin-Yeong;Gang, U-Seok;Heo, Min;Lee, Jae-Ok;Song, Yeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.302.2-302.2
    • /
    • 2016
  • 알루미늄 산화막 스퍼터링 공정 중 타겟이 반응성이 있는 산소와 결합하여 산화되는 타겟 오염은 증착 효율의 감소[1]와 방전기 내 아크 발생을 촉진[2]하여 이를 억제하는 방법이 연구되어 왔다. 본 연구에서는 알루미늄 산화막 증착 공정 중 타겟 오염 현상이 기판에 증착된 알루미늄 산화막 특성이 미치는 영향을 분석하였다. 실험에는 알루미늄 타겟이 설치된 6 인치 웨이퍼용 직류 마그네트론 스퍼터링 장치를 활용하였다. 위 장치에서 공정 변수 제어를 통해 타겟 오염 현상의 진행 속도를 제어하였다. 공정 중 타겟 오염 현상을 타겟 표면 알루미나 형성에 따른 전압 강하로 관찰하였고 타겟 오염에 의한 플라즈마 변화를 원자방출분광법을 통해 관찰하였다. 이 때 기판에 증착 된 알루미나 박막의 화학적 결합 특성을 XPS depth로 측정하였으며, 알루미나 박막의 두께를 TEM을 통해 측정하였다. 측정 결과 타겟 오염 발생에 의해 공정 중 인가 전압 감소와 타겟 오염에 소모된 산소 신호의 감소가 타겟 오염 정도에 따라 변동되었다. 또한 공정 중 타겟 오염 정도가 클수록 기판에 증착한 막과 실리콘 웨이퍼 사이에 산소와 실로콘 웨이퍼의 화합물인 산화규소 계면의 형성 증가됨을 확인했다. 위 현상은 타겟 오염 과정 중 발생하는 방전기 내 산소 분압 변화와 막 증착 속도 변화가 산소의 실리콘 웨이퍼로의 확산에 영향을 준 것으로 해석되었다. 위 결과를 통해 스퍼터링 공정 중 타겟 오염 현상이 기판에 증착 된 알루미나 막 및 계면에 미치는 영향을 확인하였다.

  • PDF