DOI QR코드

DOI QR Code

Formic Acid Oxidation on Bi-modified Pt Nanoparticles of Various Sizes

  • Jung, Chang-Hoon (Department of Chemistry, Chungnam National University) ;
  • Zhang, Ting (Department of Chemistry, Chungnam National University) ;
  • Kim, Byung-Jun (Department of Chemistry, Chungnam National University) ;
  • Kim, Jan-Dee (Department of Chemistry, Chungnam National University) ;
  • Rhee, Choong-Kyun (Department of Chemistry, Chungnam National University) ;
  • Lim, Tae-Hoon (Center for Fuel Cell Research, Korea Institute of Science and Technology)
  • Received : 2010.03.17
  • Accepted : 2010.04.12
  • Published : 2010.06.20

Abstract

This work presents oxidation of formic acid on Bi-modified Pt nanoparticles of various sizes. The sizes of the studied Pt nanoparticles range from 1.5 to 5.6 nm (detailed in Rhee, C. K.; Kim, B.-J.; Ham, C.; Kim, Y.-J.; Song, K.; Kwon, K. Langmuir 2009, 25, 7140-7147), and the surfaces of the Pt nanoparticles are modified with irreversibly adsorbed Bi. The investigated coverages of Bi on the Pt nanoparticles are 0.12 and 0.25 as determined by coulometry of the oxidation of adsorbed hydrogen and Bi, and X-ray photoelectron spectroscopy. The cyclic voltammetric behavior of formic acid oxidation reveals that the adsorbed Bi enhances the catalytic activity of Pt nanoparticles by impeding a poison-forming dehydration path with a concomitant promotion of a dehydrogenation path. The chronoamperometric results indicate that elemental Bi and partially oxidized Bi are responsible for the catalytic enhancement, when the Bi coverages on Pt nanoparticles are 0.12 and 0.25, respectively. The size effect of Bi-modified Pt nanoparticles in formic acid oxidation is discussed in terms of specific activity (current per unit surface area) and mass activity (current per unit mass).

Keywords

References

  1. Parsons, R.; Vandernoot, T. J. Electroanal. Chem. 1988, 257, 9. https://doi.org/10.1016/0022-0728(88)87028-1
  2. Feliu, J. M.; Herrero, E. Handbook of Fuel Cells; John Wiley & Sons Ltd.: New York, 2003; Vol. 2.
  3. Capon, A.; Parsons, R. J. Electroanal. Chem. 1973, 44, 1. https://doi.org/10.1016/S0022-0728(73)80508-X
  4. Capon, A.; Parsons, R. J. Electroanal. Chem. 1973, 45, 205. https://doi.org/10.1016/S0022-0728(73)80158-5
  5. Clavilier, J.; Parsons, R.; Durand, R.; Lamy, C.; Leger, J. M. J. Electroanal. Chem. 1981, 124, 321. https://doi.org/10.1016/S0022-0728(81)80311-7
  6. Adzic, R. R.; Tripkovic, A. V.; O'Grady, W. Nature 1982, 296, 137. https://doi.org/10.1038/296137a0
  7. Lamy, C.; Leger, J. M.; Clavilier, J.; Parsons, R. J. Electroanal. Chem. 1983, 150, 321.
  8. Motoo, S.; Furuya, N. J. Electroanal. Chem. 1985, 184, 303. https://doi.org/10.1016/0368-1874(85)85535-0
  9. Smith, S. P. E.; Ben-Dor, K. F.; Abrua, H. D. Langmuir 1999, 15, 7325. https://doi.org/10.1021/la9903447
  10. Herrero, E.; Climent, V. T.; Feliu, J. M. Electrochem. Commun. 2000, 2, 636. https://doi.org/10.1016/S1388-2481(00)00093-X
  11. Rhee, C. K.; Kim, B.-J.; Ham, C.; Kim, Y.-J.; Song, K.; Kwon, K. Langmuir 2009, 25, 7140. https://doi.org/10.1021/la900204c
  12. Clavilier, J.; Femandez-Vega, A.; Feliu, J. M.; Aldaz, A. J. Electroanal. Chem. 1989, 261, 113. https://doi.org/10.1016/0022-0728(89)87130-X
  13. Clavilier, J.; Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A. J. Electroanal. Chem. 1989, 258, 89. https://doi.org/10.1016/0022-0728(89)85164-2
  14. Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A.; Clavilier, J. J. Electroanal. Chem. 1989, 258, 101. https://doi.org/10.1016/0022-0728(89)85165-4
  15. Roychowdhury, C.; Matsumoto, F.; Mutolo, P. F.; Abruna, H. D.; Disalvo, F. J. Chem. Mater. 2005, 17, 5871. https://doi.org/10.1021/cm051886e
  16. Kang, S.; Lee, J.; Lee, J. K.; Chung, S.-Y.; Tak, Y. J. Phys. Chem. B 2006, 110, 7270. https://doi.org/10.1021/jp056753v
  17. Daniele, S.; Bergamin, S. Electrochem. Commun. 2007, 9, 1388. https://doi.org/10.1016/j.elecom.2007.02.002
  18. Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. Electrochim. Acta 1994, 39, 1825. https://doi.org/10.1016/0013-4686(94)85171-9
  19. Waszczuk, P.; Barnard, T. M.; Rice, C.; Masel, R. I.; Wieckowski, A. Electrochem. Commun. 2002, 4, 599. https://doi.org/10.1016/S1388-2481(02)00386-7
  20. Llorca, M. J.; Feliu, J. M.; Aldaz, A.; Clavilier, J. J. Electroanal. Chem. 1994, 376, 151. https://doi.org/10.1016/0022-0728(94)03506-7
  21. Baldauf, M.; Kolb, D. M. J. Phys. Chem. 1996, 100, 11375. https://doi.org/10.1021/jp952859m
  22. Choi, J. H.; Jeong, K. J.; Dong, Y.; Han, J.; Lim, T. H.; Lee, J. S.; Sung, Y. E. J. Power Sources 2006, 163, 71. https://doi.org/10.1016/j.jpowsour.2006.02.072
  23. Motoo, S.; Watanabe, M. J. Electroanal. Chem. 1976, 69, 429. https://doi.org/10.1016/S0022-0728(76)80145-3
  24. Kim, J.; Jung, C.; Rhee, C. K.; Lim, T.-H. Langmuir 2007, 23, 10831. https://doi.org/10.1021/la701377n
  25. Kinoshita, K. Electrochemical Oxygen Technology; John Wiley & Sons, Inc: New York, 1992.
  26. Benfield, R. E. J. Chem. Soc. Faraday Trans. 1992, 88, 1107. https://doi.org/10.1039/ft9928801107
  27. Montejano-Carrizales, J. M.; Aguilera-Granja, F.; Lopez, J. L. M. Nanostruct. Mater. 1997, 8, 269. https://doi.org/10.1016/S0965-9773(97)00168-2
  28. Jr, P. N. R. Handbook of Fuel Cell; John Wiley & Sons: New York, 2003; Vol. 2.
  29. Mukerjee, S.; McBreen, J. J. Electroanal. Chem. 1998, 448, 163. https://doi.org/10.1016/S0022-0728(97)00018-1
  30. Hammer, B.; Norskov, J. K.; Bruce, C. G.; Helmut, K. Adv. Catal.; Academic Press: 2000; Vol. 45.

Cited by

  1. Significantly Enhancing Catalytic Activity of Tetrahexahedral Pt Nanocrystals by Bi Adatom Decoration vol.133, pp.33, 2011, https://doi.org/10.1021/ja2042029
  2. Structural evolution of irreversibly adsorbed Bi on Pt(111) under potential excursion vol.17, pp.12, 2013, https://doi.org/10.1007/s10008-013-2218-9
  3. Formic Acid Oxidation Depending on Rotating Speed of Smooth Pt Disk Electrode vol.5, pp.3, 2014, https://doi.org/10.5229/JECST.2014.5.3.82
  4. Block copolymer templated synthesis of PtIr bimetallic nanocatalysts for the formic acid oxidation reaction vol.5, pp.40, 2017, https://doi.org/10.1039/C7TA06458F
  5. Particle Size Effect: Ru-Modified Pt Nanoparticles Toward Methanol Oxidation vol.33, pp.10, 2010, https://doi.org/10.5012/bkcs.2012.33.10.3331
  6. From CO2 to Formic Acid Fuel Cells vol.60, pp.2, 2010, https://doi.org/10.1021/acs.iecr.0c04711