DOI QR코드

DOI QR Code

Enantiomeric Resolution of α-Amino Acid Derivatives on Two Diastereomeric Chiral Stationary Phases Based on Chiral Crown Ethers Incorporating Two Different Chiral Units

  • Kim, Hee-Jin (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Choi, Hee-Jung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Cho, Yoon-Jae (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Hyun, Myung-Ho (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2010.03.31
  • Accepted : 2010.04.15
  • Published : 2010.06.20

Abstract

Two diastereomeric chiral stationary phases (CSPs) were applied to the liquid chromatographic resolution of various racemic ${\alpha}$-amino methyl esters, ${\alpha}$-amino N,N-diethylamides and ${\alpha}$-amino N-propylamides. The CSP incorporating (R)-3,3'-diphenyl-1,1'-binaphtyl and (R,R)-tartaric acid unit as chiral barriers did not show any chiral recognition. In contrast, the CSP incorporating (R)-3,3'-diphenyl-1,1'-binaphtyl and (S,S)-tartaric acid unit as chiral barriers was found to show excellent chiral recognition especially for the two enantiomers of ${\alpha}$-amino N-propylamides. Some of ${\alpha}$-amino methyl esters and ${\alpha}$-amino N,N-diethylamides were also resolved on the CSP incorporating (R)-3,3'-diphenyl-1,1'-binaphtyl and (S,S)-tartaric acid unit. From these results it was concluded that the two chiral units composing the diastereomeric CSPs can show "matched" or "mismatched" effect on the chiral recognition according to their absolute stereochemistry.

Keywords

References

  1. Hyun, M. H. Bull. Kor. Chem. Soc. 2005, 26, 1153. https://doi.org/10.5012/bkcs.2005.26.8.1153
  2. Choi, H. J.; Hyun, M. H. J. Liq. Chromatogr. Rel. Technol. 2007, 30, 853. https://doi.org/10.1080/10826070701191136
  3. Sousa, L. R.; Sogah, G. D. Y.; Hoffman, D. H.; Cram, D. J. J. Am. Chem. Soc. 1978, 100, 4569. https://doi.org/10.1021/ja00482a041
  4. Sogah , G.D.Y.; Cram, D. J. J. Am. Chem. Soc. 1979, 101, 3035. https://doi.org/10.1021/ja00505a034
  5. Shinbo, T.; Yamaguchi, T.; Nishimura, K.; Sugiura, M.; J. Chromatogr. 1987, 405, 145. https://doi.org/10.1016/S0021-9673(01)81756-8
  6. Shinbo, T.; Yamaguchi, T.; Yanagishita, H.; Kitamoto, D.; Sakaki, K.; Sugiura, M. J. Chromatogr. 1992, 625, 101. https://doi.org/10.1016/0021-9673(92)85191-U
  7. Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J. J. Chromatogr. A 2001, 910, 359. https://doi.org/10.1016/S0021-9673(00)01230-9
  8. Hyun, M. H.; Han, S. C.; Lipshutz, B. H.; Shin, Y.-J.; Welch, C. J. J. Chromatogr. A 2002, 959, 75. https://doi.org/10.1016/S0021-9673(02)00431-4
  9. Hyun, M. H.; Min, H. J.; Cho, Y. J. J. Chromatogr. A 2003, 996, 233.
  10. Hyun, M. H.; Tan, G.; Cho, Y. J. Biomed. Chromatogr. 2005, 19, 208. https://doi.org/10.1002/bmc.437
  11. Hyun, M. H.; Han, S. C.; Choi, H. J.; Kang, B. S.; Ha, H. J. J. Chromatogr. A 2007, 1138, 169. https://doi.org/10.1016/j.chroma.2006.10.048
  12. Choi, H. J.; Ha, H. J.; Han, S. C.; Hyun, M. H. Anal. Chim. Acta 2008, 619, 122. https://doi.org/10.1016/j.aca.2008.03.052
  13. Welch, C. J.; Hyun, M. H.; Kubota, T.; Schafer, W.; Bernardoni, F.; Choi, H. J.; Wu, N.; Gong, X.; Lipshutz, B. Chirality 2008, 20, 815 https://doi.org/10.1002/chir.20548
  14. Choi, H. J.; Jin, J. S.; Hyun, M. H. J. Chromatogr. B 2008, 875, 102. https://doi.org/10.1016/j.jchromb.2008.05.047
  15. Choi, H. J.; Jin, J. S.; Hyun, M. H. Chirality 2009, 21, 11. https://doi.org/10.1002/chir.20582
  16. Choi, H. J.; Cho, H. S.; Han, S. C.; Hyun, M. H. J. Sep. Sci. 2009, 32, 536. https://doi.org/10.1002/jssc.200800610

Cited by

  1. Preparation of Two New Diasteromeric Chiral Stationary Phases Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid and (R)- or (S)-1-(1-Naphthyl)ethylamine and Chiral Tethering Group Effect on the Chiral Recognition vol.21, pp.8, 2016, https://doi.org/10.3390/molecules21081051
  2. Chromatographic separations based on tartaric acid and its derivatives vol.149, pp.5, 2018, https://doi.org/10.1007/s00706-018-2160-8
  3. Recent applications in chiral high performance liquid chromatography: A review vol.706, pp.2, 2010, https://doi.org/10.1016/j.aca.2011.08.038