Abstract
UV-curable acrylic Pressure-sensitive adhesives (Acrylic PSAs) are used in many different parts in the world. A wafer manufacture process which is based on semiconductor industry is one thing. We have used acrylic PSAs whose thickness is different from $20{\mu}m$ to $30{\mu}m$ in wafer manufacture process so far. But as wafers become more thinner, acrylic PSAs are supposed to satisfy the requirements such as proper adhesion performance. The main purpose of this research is studying proper adhesion performance and UV-curing behavior of UV-curable acrylic PSAs with very thin thickness and then determining optimized conditions to raise the efficiency of thin wafer production. Acrylic PSAs contain 2-Ethylhexyl Acrylate (2-EHA), Acrylic Acid (AA) and Butyl Acrylate (BA). Ethyl acetate (EtAc) is used as solvent. The acrylic PSAs are obtained using solvent polymerization. Thickness of UV-curable acrylic PSAs is different from $10{\sim}30{\mu}m$. By peel strength and probe tack, adhesion performance and UV curing behavior of acrylic PSA are concerned.