DOI QR코드

DOI QR Code

Production of 1,3-Dihydroxyacetone from Glycerol by Gluconobacter oxydans ZJB09112

  • Hu, Zhong-Ce (Institute of Bioengineering, Zhejiang University of Technology) ;
  • Liu, Zhi-Qiang (Institute of Bioengineering, Zhejiang University of Technology) ;
  • Zheng, Yu-Guo (Institute of Bioengineering, Zhejiang University of Technology) ;
  • Shen, Yin-Chu (Institute of Bioengineering, Zhejiang University of Technology)
  • Published : 2010.02.28

Abstract

The culture variables were optimized to increase 1,3-dihydroxyacetone (DHA) production by Gluconohacter oxydans ZJB09112 in shake flasks and bubble column bioreactors. After fermentation in the optimized medium (g/l: yeast extract 5, glycerol 2.5, mannitol 22.5, $K_2HPO_4$ 0.5, $KH_2PO_4$ 0.5, $MgSO_4{\cdot}7H_2O$ 0.1, $CaCO_3$ 2.0, pH 5.0), when five times of glycerol feeding were applied, $161.9{\pm}5.9\;g/l$ of DHA was attained at a $88.7{\pm}3.2%$ conversion rate of glycerol to DHA.

Keywords

References

  1. Bauer, R., N. Katsikis, S. Varga, and D. Hekmat. 2005. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeatedfed-batch process. Bioprocess Biosyst. Eng. 28: 37-43. https://doi.org/10.1007/s00449-005-0009-0
  2. Boontawan, A. and D. Stuckey. 2006. A membrane bioreactor for the biotransformation of alpha-pinene oxide to isonovalal by Pseudomonas fluorescens NCIMB 11671. Appl. Microbiol. Biotechnol. 69: 643-649. https://doi.org/10.1007/s00253-005-0025-7
  3. Burton, S. G. 2001. Development of bioreactors for application of biocatalysts in biotransformations and bioremediation. Pure Appl. Chem. 73: 77-83. https://doi.org/10.1351/pac200173010077
  4. Claret, C., A. Bories, and P. Soucaille. 1992. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Curr. Microbiol. 25: 149-155. https://doi.org/10.1007/BF01571023
  5. Claret, C., A. Bories, and P. Soucaille. 1993. Inhibitory effect of dihydroxyacetone on Gluconobacter oxydans: Kinetic aspects and expression by mathematical equations. J. Ind. Microbiol. 11: 105-112. https://doi.org/10.1007/BF01583682
  6. Claret, C., J. M. Salmon, C. Romieu, and A. Bories. 1994. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl. Microbiol. Biotechnol. 41: 359-365. https://doi.org/10.1007/BF00221232
  7. Enders, D., M. Voith, and A. Lenzen. 2005. The dihydroxyacetone unit - a versatile C3 building block in organic synthesis. Angew. Chem. Int. Edit. 44: 1304-1325. https://doi.org/10.1002/anie.200400659
  8. Flickinger, M. C. and D. Perlman. 1977. Application of oxygenenriched aeration in the conversion of glycerol to dihydroxyacetone by Gluconobacter melanogenus IFO 3293. Appl. Environ. Microbiol. 33: 706-712
  9. Fregapane, G., H. Rubio-Fernandez, and M. D. Salvador. 2003. Continuous production of wine vinegar in bubble column reactors of up to 60-litre capacity. Eur. Food Res. Technol. 216: 63-67.
  10. Gatgens, C., U. Degner, S. Bringer-Meyer, and U. Herrmann. 2007. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl. Microbiol. Biotechnol. 76: 553-559. https://doi.org/10.1007/s00253-007-1003-z
  11. Hekmat, D., R. Bauer, and J. Fricke. 2003. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26: 109-116. https://doi.org/10.1007/s00449-003-0338-9
  12. Hosseini, M., S. A. Shojaosadati, and J. Towfighi. 2003. Application of a bubble-column reactor for the production of a single-cell protein from cheese whey. Ind. Eng. Chem. Res. 42: 764-766. https://doi.org/10.1021/ie020254o
  13. Hu, Z. C. and Y. G. Zheng. 2009. A high throughput screening method for 1,3-dihydroxyacetone-producing bacterium by cultivation in a 96-well microtiter plate. J. Rapid Methods Autom. Microbiol. 17: 233-241. https://doi.org/10.1111/j.1745-4581.2009.00173.x
  14. Kantarci, N., F. Borak, and K. O. Ulgen. 2005. Bubble column reactors. Process Biochem. 40: 2263-2283. https://doi.org/10.1016/j.procbio.2004.10.004
  15. Klein, J., M. Rosenberg, J. Markos, O. Dolgos, M. Kroslak, and L. Kristofikova. 2002. Biotransformation of glucose to gluconic acid by Aspergillus niger: Study of mass transfer in an airlift bioreactor. Biochem. Eng. J. 10: 197-205. https://doi.org/10.1016/S1369-703X(01)00181-4
  16. Levy, S. B. 1992. Dihydroxyacetone-containing sunless or selftanning lotions. J. Am. Acad. Dermatol. 27: 989-993. https://doi.org/10.1016/0190-9622(92)70300-5
  17. Liu, Z. Q., Z. C. Hu, Y. G. Zheng, and Y. C. Shen. 2008. Optimization of cultivation conditions for the production of 1,3-dihydroxyacetone by Pichia membranifaciens using response surface methodology. Biochem. Eng. J. 38: 285-291. https://doi.org/10.1016/j.bej.2007.07.015
  18. Maier, U. and J. Buchs. 2001. Characterisation of the gasliquid mass transfer in shaking bioreactors. Biochem. Eng. J. 7: 99-106. https://doi.org/10.1016/S1369-703X(00)00107-8
  19. Mishra, R., S. R. Jain, and A. Kumar. 2008. Microbial production of dihydroxyacetone. Biotechnol. Adv. 26: 293-303. https://doi.org/10.1016/j.biotechadv.2008.02.001
  20. Nguyen, B. C. and I. E. Kochevar. 2003. Factors influencing sunless tanning with dihydroxyacetone. Br. J. Dermatol. 149: 332-340. https://doi.org/10.1046/j.1365-2133.2003.05434.x
  21. Orejas, J. A. 1999. Modelling and simulation of a bubblecolumn reactor with external loop: Application to the direct chlorination of ethylene. Chem. Eng. Sci. 54: 5299-5309. https://doi.org/10.1016/S0009-2509(99)00254-7
  22. Prasad, S., R. Banerjee, and B. C. Bhattacharyya. 1995. Production of proteolytic-enzyme by Rhizopus oryzae in a bubble-column bioreactor. Bioprocess Eng. 13: 41-43. https://doi.org/10.1007/BF00368764
  23. Prust, C., M. Hoffmeister, H. Liesegang, A. Wiezer, W. F. Fricke, A. Ehrenreich, G. Gottschalk, and U. Deppenmeier. 2005. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat. Biotechnol. 23: 195-200. https://doi.org/10.1038/nbt1062
  24. Rajatanavin, N., S. Suwanachote, and S. Kulkollakarn. 2008. Dihydroxyacetone: A safe camouflaging option in vitiligo. Int. J. Dermatol. 47: 402-406. https://doi.org/10.1111/j.1365-4632.2008.03356.x
  25. Rollini, M. and M. Manzoni. 2005. Bioconversion of D-galactitol to tagatose and dehydrogenase activity induction in Gluconobacter oxydans. Process Biochem. 40: 437-444. https://doi.org/10.1016/j.procbio.2004.01.028
  26. Stanko, R. T., T. L. Ferguson, C. W. Newman, and R. K. Newman. 1989. Reduction of carcass fat in swine with dietary addition of dihydroxyacetone and pyruvate. J. Anim. Sci. 67: 1272-1278.
  27. Svitel, J. and E. Sturdik. 1994. Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans. J. Ferment. Bioeng. 78: 351-355. https://doi.org/10.1016/0922-338X(94)90279-8
  28. Wang, L. L., J. Qian, Z. C. Hu, Y. G. Zheng, and W. Hu. 2006. Determination of dihydroxyacetone and glycerol in fermentation broth by pyrolytic methylation/gas chromatography. Anal. Chim. Acta 557: 262-266. https://doi.org/10.1016/j.aca.2005.10.030
  29. Wei, S. H., Q. X. Song, and D. Z. Wei. 2007. Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone. Prep. Biochem. Biotechnol. 37: 67-76. https://doi.org/10.1080/10826060601040954
  30. White, S. A. and G. W. Claus. 1982. Effect of Intracytoplasmic membrane development on oxidation of sorbitol and other polyols by Gluconobacter oxydans. J. Bacteriol. 150: 934-943.
  31. Zheng, Y. G., X. L. Chen, and Y. C. Shen. 2008. Commodity chemicals derived from glycerol, an important biorefinery feedstock. Chem. Rev. 108: 5253-5277.

Cited by

  1. Enhancement of 1,3-Dihydroxyacetone Production by a UV-induced Mutant of Gluconobacter oxydans with DO Control Strategy vol.165, pp.5, 2010, https://doi.org/10.1007/s12010-011-9332-x
  2. Process development of oxygen-demanding reactions utilizing a simple design with parallel glass tube reactors - Evaluated using Gluconobacter oxydans (DSM 24525) vol.30, pp.5, 2010, https://doi.org/10.3109/10242422.2012.740019
  3. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-S vol.39, pp.8, 2016, https://doi.org/10.1007/s00449-016-1595-8
  4. Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol vol.47, pp.1, 2010, https://doi.org/10.1016/j.bjm.2015.11.020
  5. Strategy of oxygen transfer coefficient control on the l -erythrulose fermentation by newly isolated Gluconobacter kondonii vol.24, pp.None, 2016, https://doi.org/10.1016/j.ejbt.2016.08.006
  6. Review on enzymatic synthesis of value added products of glycerol, a by-product derived from biodiesel production vol.2017, pp.4, 2010, https://doi.org/10.1016/j.reffit.2017.02.009
  7. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors vol.7, pp.2, 2010, https://doi.org/10.3390/membranes7020017
  8. Dihydroxyacetone production from glycerol using Gluconobacter oxydans : Study of medium composition and operational conditions in shaken flasks vol.35, pp.4, 2010, https://doi.org/10.1002/btpr.2803
  9. Batch and Repeated-Batch Fermentation for 1,3-Dihydroxyacetone Production from Waste Glycerol Using Free, Immobilized and Resting Gluconobacter oxydans Cells vol.10, pp.9, 2010, https://doi.org/10.1007/s12649-018-0307-9