References
- Bauer, R., N. Katsikis, S. Varga, and D. Hekmat. 2005. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeatedfed-batch process. Bioprocess Biosyst. Eng. 28: 37-43. https://doi.org/10.1007/s00449-005-0009-0
- Boontawan, A. and D. Stuckey. 2006. A membrane bioreactor for the biotransformation of alpha-pinene oxide to isonovalal by Pseudomonas fluorescens NCIMB 11671. Appl. Microbiol. Biotechnol. 69: 643-649. https://doi.org/10.1007/s00253-005-0025-7
- Burton, S. G. 2001. Development of bioreactors for application of biocatalysts in biotransformations and bioremediation. Pure Appl. Chem. 73: 77-83. https://doi.org/10.1351/pac200173010077
- Claret, C., A. Bories, and P. Soucaille. 1992. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Curr. Microbiol. 25: 149-155. https://doi.org/10.1007/BF01571023
- Claret, C., A. Bories, and P. Soucaille. 1993. Inhibitory effect of dihydroxyacetone on Gluconobacter oxydans: Kinetic aspects and expression by mathematical equations. J. Ind. Microbiol. 11: 105-112. https://doi.org/10.1007/BF01583682
- Claret, C., J. M. Salmon, C. Romieu, and A. Bories. 1994. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl. Microbiol. Biotechnol. 41: 359-365. https://doi.org/10.1007/BF00221232
- Enders, D., M. Voith, and A. Lenzen. 2005. The dihydroxyacetone unit - a versatile C3 building block in organic synthesis. Angew. Chem. Int. Edit. 44: 1304-1325. https://doi.org/10.1002/anie.200400659
- Flickinger, M. C. and D. Perlman. 1977. Application of oxygenenriched aeration in the conversion of glycerol to dihydroxyacetone by Gluconobacter melanogenus IFO 3293. Appl. Environ. Microbiol. 33: 706-712
- Fregapane, G., H. Rubio-Fernandez, and M. D. Salvador. 2003. Continuous production of wine vinegar in bubble column reactors of up to 60-litre capacity. Eur. Food Res. Technol. 216: 63-67.
- Gatgens, C., U. Degner, S. Bringer-Meyer, and U. Herrmann. 2007. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl. Microbiol. Biotechnol. 76: 553-559. https://doi.org/10.1007/s00253-007-1003-z
- Hekmat, D., R. Bauer, and J. Fricke. 2003. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26: 109-116. https://doi.org/10.1007/s00449-003-0338-9
- Hosseini, M., S. A. Shojaosadati, and J. Towfighi. 2003. Application of a bubble-column reactor for the production of a single-cell protein from cheese whey. Ind. Eng. Chem. Res. 42: 764-766. https://doi.org/10.1021/ie020254o
- Hu, Z. C. and Y. G. Zheng. 2009. A high throughput screening method for 1,3-dihydroxyacetone-producing bacterium by cultivation in a 96-well microtiter plate. J. Rapid Methods Autom. Microbiol. 17: 233-241. https://doi.org/10.1111/j.1745-4581.2009.00173.x
- Kantarci, N., F. Borak, and K. O. Ulgen. 2005. Bubble column reactors. Process Biochem. 40: 2263-2283. https://doi.org/10.1016/j.procbio.2004.10.004
- Klein, J., M. Rosenberg, J. Markos, O. Dolgos, M. Kroslak, and L. Kristofikova. 2002. Biotransformation of glucose to gluconic acid by Aspergillus niger: Study of mass transfer in an airlift bioreactor. Biochem. Eng. J. 10: 197-205. https://doi.org/10.1016/S1369-703X(01)00181-4
- Levy, S. B. 1992. Dihydroxyacetone-containing sunless or selftanning lotions. J. Am. Acad. Dermatol. 27: 989-993. https://doi.org/10.1016/0190-9622(92)70300-5
- Liu, Z. Q., Z. C. Hu, Y. G. Zheng, and Y. C. Shen. 2008. Optimization of cultivation conditions for the production of 1,3-dihydroxyacetone by Pichia membranifaciens using response surface methodology. Biochem. Eng. J. 38: 285-291. https://doi.org/10.1016/j.bej.2007.07.015
- Maier, U. and J. Buchs. 2001. Characterisation of the gasliquid mass transfer in shaking bioreactors. Biochem. Eng. J. 7: 99-106. https://doi.org/10.1016/S1369-703X(00)00107-8
- Mishra, R., S. R. Jain, and A. Kumar. 2008. Microbial production of dihydroxyacetone. Biotechnol. Adv. 26: 293-303. https://doi.org/10.1016/j.biotechadv.2008.02.001
- Nguyen, B. C. and I. E. Kochevar. 2003. Factors influencing sunless tanning with dihydroxyacetone. Br. J. Dermatol. 149: 332-340. https://doi.org/10.1046/j.1365-2133.2003.05434.x
- Orejas, J. A. 1999. Modelling and simulation of a bubblecolumn reactor with external loop: Application to the direct chlorination of ethylene. Chem. Eng. Sci. 54: 5299-5309. https://doi.org/10.1016/S0009-2509(99)00254-7
- Prasad, S., R. Banerjee, and B. C. Bhattacharyya. 1995. Production of proteolytic-enzyme by Rhizopus oryzae in a bubble-column bioreactor. Bioprocess Eng. 13: 41-43. https://doi.org/10.1007/BF00368764
- Prust, C., M. Hoffmeister, H. Liesegang, A. Wiezer, W. F. Fricke, A. Ehrenreich, G. Gottschalk, and U. Deppenmeier. 2005. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat. Biotechnol. 23: 195-200. https://doi.org/10.1038/nbt1062
- Rajatanavin, N., S. Suwanachote, and S. Kulkollakarn. 2008. Dihydroxyacetone: A safe camouflaging option in vitiligo. Int. J. Dermatol. 47: 402-406. https://doi.org/10.1111/j.1365-4632.2008.03356.x
- Rollini, M. and M. Manzoni. 2005. Bioconversion of D-galactitol to tagatose and dehydrogenase activity induction in Gluconobacter oxydans. Process Biochem. 40: 437-444. https://doi.org/10.1016/j.procbio.2004.01.028
- Stanko, R. T., T. L. Ferguson, C. W. Newman, and R. K. Newman. 1989. Reduction of carcass fat in swine with dietary addition of dihydroxyacetone and pyruvate. J. Anim. Sci. 67: 1272-1278.
- Svitel, J. and E. Sturdik. 1994. Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans. J. Ferment. Bioeng. 78: 351-355. https://doi.org/10.1016/0922-338X(94)90279-8
- Wang, L. L., J. Qian, Z. C. Hu, Y. G. Zheng, and W. Hu. 2006. Determination of dihydroxyacetone and glycerol in fermentation broth by pyrolytic methylation/gas chromatography. Anal. Chim. Acta 557: 262-266. https://doi.org/10.1016/j.aca.2005.10.030
- Wei, S. H., Q. X. Song, and D. Z. Wei. 2007. Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone. Prep. Biochem. Biotechnol. 37: 67-76. https://doi.org/10.1080/10826060601040954
- White, S. A. and G. W. Claus. 1982. Effect of Intracytoplasmic membrane development on oxidation of sorbitol and other polyols by Gluconobacter oxydans. J. Bacteriol. 150: 934-943.
- Zheng, Y. G., X. L. Chen, and Y. C. Shen. 2008. Commodity chemicals derived from glycerol, an important biorefinery feedstock. Chem. Rev. 108: 5253-5277.
Cited by
- Enhancement of 1,3-Dihydroxyacetone Production by a UV-induced Mutant of Gluconobacter oxydans with DO Control Strategy vol.165, pp.5, 2010, https://doi.org/10.1007/s12010-011-9332-x
- Process development of oxygen-demanding reactions utilizing a simple design with parallel glass tube reactors - Evaluated using Gluconobacter oxydans (DSM 24525) vol.30, pp.5, 2010, https://doi.org/10.3109/10242422.2012.740019
- Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-S vol.39, pp.8, 2016, https://doi.org/10.1007/s00449-016-1595-8
- Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol vol.47, pp.1, 2010, https://doi.org/10.1016/j.bjm.2015.11.020
- Strategy of oxygen transfer coefficient control on the l -erythrulose fermentation by newly isolated Gluconobacter kondonii vol.24, pp.None, 2016, https://doi.org/10.1016/j.ejbt.2016.08.006
- Review on enzymatic synthesis of value added products of glycerol, a by-product derived from biodiesel production vol.2017, pp.4, 2010, https://doi.org/10.1016/j.reffit.2017.02.009
- Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors vol.7, pp.2, 2010, https://doi.org/10.3390/membranes7020017
- Dihydroxyacetone production from glycerol using Gluconobacter oxydans : Study of medium composition and operational conditions in shaken flasks vol.35, pp.4, 2010, https://doi.org/10.1002/btpr.2803
- Batch and Repeated-Batch Fermentation for 1,3-Dihydroxyacetone Production from Waste Glycerol Using Free, Immobilized and Resting Gluconobacter oxydans Cells vol.10, pp.9, 2010, https://doi.org/10.1007/s12649-018-0307-9