References
- Aksoy, S., H. Tumturk, and N. Hasirci. 1998. Stability of TEX>$\alpha$-amylase immobilized on poly (methyl methacrylate acrylic acid) a microspheres. J. Biotechnol. 60: 37-46. https://doi.org/10.1016/S0168-1656(97)00179-X
- Bagi, K., L. M. Simon, and B. Szajani. 1997. Immobilization and characterization of porcine pancreas lipase. Enzyme Microb. Technol. 20: 531-535. https://doi.org/10.1016/S0141-0229(96)00190-1
- Balcao, V. M., A. L. Paiva, and F. X. Malcata. 1996. Bioreactors with immobilized lipases: State of art. Enzyme Microb. Technol. 18: 392-396. https://doi.org/10.1016/0141-0229(95)00125-5
- Berekaa, M. M., T. I. Zaghloul, Y. R. Abdel-Fattah, H. M. Saeed, and M. Sifour. 2009. Production of a novel glycerolinducible lipase from thermophilic Geobacillus stearothermophilus strain-5. World J. Microbiol. Biotechnol. 25: 287-294. https://doi.org/10.1007/s11274-008-9891-3
- Bickerstaff, G. F. 1997. Immobilization of enzymes and cells, pp.1-11. In G. F. Bickerstaff (ed.). Methods in Biotechnology, Vol. I. Humana Press INC., Totowa, New Jersey.
- Bismuto, E., P. L. Martelli, A. De Maio, D. G. Mita, G. Irace, and R. Gasadio. 2002. Effect of molecular confinement on internal enzyme dynamics: Frequency domain fluorimetry and molecular dynamics simulation studies. Biopolymers 67: 85-95. https://doi.org/10.1002/bip.10058
- Borkar, P. S., R. G. Bodade, S. R. Rao, and C. N. Khobragade. 2009. Purification and characterization of extracellular lipase from a new strain, Pseudomonas aeruginosa SRT 9. Braz. J. Microbiol. 40: 358-366. https://doi.org/10.1590/S1517-83822009000200028
- Deng, H. T., Z. K. Xu, Z. W. Dai, J. Wu, and P. Seta. 2005. Immobilization of Candida rugosa lipase on polypropylene microfiltration membrane modified by glycopolymer: Hydrolysis of olive oil in biphasic bioreactor. Enzyme Microb. Technol. 36: 996-1002. https://doi.org/10.1016/j.enzmictec.2005.01.025
- Derewenda, U., A. M. Brzozowski, D. M. Lawson, and Z. S. Derewenda. 1992. Catalysis at the interface: The anatomy of a conformational change in a triglyceride lipase. Biochemistry 31: 1532-1541. https://doi.org/10.1021/bi00120a034
-
Dey, G., B. Singh, and R. Banerjee. 2003. Immobilization of
$\alpha$ -amylase produced by Bacillus circulans GRS313. Braz. Arch. Biol. Technol. 46: 167-176. - Eltaweel, M., R. N. Z. R. A. Rahman, A. B. Salleh, and M. Basri. 2005. An organic solvent stable lipase from Bacillus sp. strain 42. Ann. Microbiol. 55: 187-192.
- Fernandez-Lorente, G., J. M. Palomo, C. Matea, R. Munilla, C. Ortiz, and Z. Cabrera. 2006. Glutaraldehyde crosslinking in the presence of detergents of lipases adsorbed on aminated supports: Improving lipases performance. Biomacromolecules 7: 2610-2615. https://doi.org/10.1021/bm060408+
- Gianfreda, L., M. Modafferi, and Jr. G. Greco. 1985. Enzyme stabilization towards chemical, thermal and proteolytic deactivation. Enzyme Microb. Technol. 7: 78-82. https://doi.org/10.1016/0141-0229(85)90017-1
- Gomes, F. M., E. B. Pereira, and F. H. Decastro. 2004. Immobilization of lipase on chitin and its use in nonconventional biocatalysis. Biomacromolecules 5: 17-23. https://doi.org/10.1021/bm0342077
- Guisan, J., R. Fernandez-Lafuente, V. Rodriguez, A. Bastida, and G. Alvaro. 1993. Enzyme stabilization by multipoint covalent attachment to activated pre-existing supports, p. 55-62. In W. Van der Tweel, A. Harder, and R. Buitelar (eds.). Stability and stabilization of enzymes. Elsevier, Amsterdam.
- Guncheva, M., D. Zhiryakova, N. Radchenkova, and M. Kombourova. 2009. Properties of immobilized lipase from Bacillus stearothermophilus MC7. Acidolysis of triolein with caprylic acid. World J. Microbiol. Biotechnol. 25: 727-731. https://doi.org/10.1007/s11274-008-9929-6
- Guo, Z., S. Bai, and Y. Sun. 2003. Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enz. Microb. Technol. 32: 776-782. https://doi.org/10.1016/S0141-0229(03)00051-6
- Huang, X. J., A. G. Yu, and Z. K. Xu. 2008. Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour. Technol. 99: 5459-5465. https://doi.org/10.1016/j.biortech.2007.11.009
- Iyer, P. V. and L. Ananthanarayan. 2008. Enzyme stability and stabilization - Aqueous and non-aqueous environment. Process Biochem. 43: 1019-1032. https://doi.org/10.1016/j.procbio.2008.06.004
- Janssen, M. H. A., L. M. van Langen, S. R. M. Pereira, F. van Rantwijk, and R. A. Sheldon. 2002. Evaluation of the performance of immobilized penicillin G acylase using active-site titration. Biotechnol. Bioeng. 78: 425-432. https://doi.org/10.1002/bit.10208
- Khan, M. Y., M. U. Dahot, and M. H. Noomrio. 1991. Investigation of lipase activity from Cajanus cajan seed. Pak. J. Sci. Ind. Res. 34: 384-386.
- Kose, O., M. Tuter, and H. A. Aksoy. 2002. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in solvent-free medium. Bioresour. Technol. 83: 125-129. https://doi.org/10.1016/S0960-8524(01)00203-6
- Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent J. Biol. Chem. 193: 265-276.
- Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
- Mingarro, I., C. Abat, and L Braco. 1995. Interfacial activationbased molecular bioimprinting of lipolytic enzyme. Proc. Natl. Acad. Sci. U.S.A. 92: 3308. https://doi.org/10.1073/pnas.92.8.3308
- Naim, N., N. Z. Adham, E. A. Elsayed, E. M. Ahmed, and H. M. Ahmed. 2009. Optimization of lipase synthesis by Mucor racemosus: Production in a triple impeller bioreactor. Malaysian J. Microbiol. [In Press].
- Noureddini, H., X. Gao, and R. S. Philkana. 2005. Immobilized Pseudomomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 96: 769-777. https://doi.org/10.1016/j.biortech.2004.05.029
- Palomo, J. M., M. Fuentes, G. Fernandez-Lorente, G. Mateo, J. M. Guisan, and R. Fernandez-Lafuente. 2003. General trend of lipase to self-assemble giving bimolecular aggregate greatly modifies the enzyme functionality. Biomacromolecules 4: 1-6. https://doi.org/10.1021/bm025729+
- Parry, R. M., R. C. Chandan, and K. M. Shahani. 1966. Rapid and sensitive assay for milk lipase. J. Dairy Sci. 49: 356-360. https://doi.org/10.3168/jds.S0022-0302(66)87874-8
- Pimentel, M.C.B., A. B. F. Leao, E. H. M. Melo, W. M. Ledingham, J. L. Lima Filho, and J. F. Kennedy. 2006. Immobilization of Penicillium citrinum lipase on ferromagnetic azide-Dacron. Biotechnology 3: 228-233.
- Reetz, M. T. 1997. Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv. Mater. 9: 943-954. https://doi.org/10.1002/adma.19970091203
- Rodrigues, D. S., A. A. Mendes, W. S. Adriano, L. R. B. Goncalves, and R. L. C. Giordano. 2008. Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J. Mol. Catal. B Enz. 51: 100-109. https://doi.org/10.1016/j.molcatb.2007.11.016
- Serra, S., E. Brenna, C. Fuganti, and F. Maggioni. 2003. Lipasecatalyzed resolution of p-menthan-3-ols monoterpenes: Preparation of the enantiomer-enriched forms of methanol, isopulegol, transand cis-piperitol, and cis-isopiperitenol. Tetrahedr. Asymmetr. 14: 3313-3319. https://doi.org/10.1016/j.tetasy.2003.08.010
- Sharma, A. and S. Chattopadhyay. 2000. Enantio-reversal in Candida rugosa-catalyzed esterification of 3-hydroxybutryric acid. J. Mol. Catal. B Enz. 10: 531-534. https://doi.org/10.1016/S1381-1177(00)00095-3
- Sharma, R., Y. Chisti, and U. C. Benerjee. 2001. Production, characterization, and applications of lipases. Biotechnol. Adv. 19: 627-662. https://doi.org/10.1016/S0734-9750(01)00086-6
- Soares, C. M. F., O. A. A. Santos, H. F. de Castro, F. F. Moraes, and G. M. Zanin. 2006. Characterization of sol-gel encapsulated lipase using tetraethoxysilane as precursor. J. Mol. Catal. B Enz. 39: 69-76. https://doi.org/10.1016/j.molcatb.2006.01.005
- Verger, R. 1997. Interfacial activation of lipases: Facts and artifacts. Trends Biotechnol. 15: 32-83. https://doi.org/10.1016/S0167-7799(96)10064-0
- Weber, N. and K. D. Mukherjee. 2004. Solvent-free lipasecatalyzed preparation of diacylglycerols. J. Agric. Food Chem. 52: 5347-5353. https://doi.org/10.1021/jf0400819
- Woodward, J. 1985. Immobilized enzymes: Adsorption and covalent binding, pp. 3. In J. Woodward (ed.). Immobilized Cell and Enzymes. Oxford, IRL Press, Washington, DC.
Cited by
- Significant stabilization of ribonuclease A by additive effects vol.279, pp.14, 2010, https://doi.org/10.1111/j.1742-4658.2012.08632.x
- Ultrasound-assisted dextranase entrapment onto Ca-alginate gel beads vol.20, pp.4, 2010, https://doi.org/10.1016/j.ultsonch.2012.11.016
- Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel vol.21, pp.4, 2010, https://doi.org/10.1016/j.ultsonch.2014.02.004
- Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29 vol.19, pp.4, 2010, https://doi.org/10.1007/s00792-015-0757-y
- Molecular Determinants for Protein Stabilization by Insertional Fusion to a Thermophilic Host Protein vol.16, pp.16, 2010, https://doi.org/10.1002/cbic.201500310
- Agarose Hydrogel Beads: An Effective Approach to Improve the Catalytic Activity, Stability and Reusability of Fungal Amyloglucosidase of GH15 Family vol.148, pp.9, 2010, https://doi.org/10.1007/s10562-018-2460-y
- Improvement of Activity and Thermostability of Agar-Entrapped, Thermophilic, Haloalkaliphilic Amylase AmyD8 vol.148, pp.9, 2010, https://doi.org/10.1007/s10562-018-2493-2
- Immobilization of β‐1,4‐xylanase isolated from Bacillus licheniformis S3 vol.60, pp.7, 2010, https://doi.org/10.1002/jobm.202000077
- Thermo-alkali-stable lipase from a novel Aspergillus niger: statistical optimization, enzyme purification, immobilization and its application in biodiesel production vol.51, pp.3, 2021, https://doi.org/10.1080/10826068.2020.1805759