DOI QR코드

DOI QR Code

Immobilization and Stability of Lipase from Mucor racemosus NRRL 3631

  • Adham, Nehad Zaki (Chemistry of Natural and Microbial Products Department, National Research Centre) ;
  • Ahmed, Hanan Mostafa (Chemistry of Natural and Microbial Products Department, National Research Centre) ;
  • Naim, Nadia (Chemistry of Natural and Microbial Products Department, National Research Centre)
  • Published : 2010.02.28

Abstract

The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at $45^{\circ}C$. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and $60^{\circ}C$, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher $K_m$ (11.11 mM) and lower $V_{max}$ (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.

Keywords

References

  1. Aksoy, S., H. Tumturk, and N. Hasirci. 1998. Stability of TEX>$\alpha$-amylase immobilized on poly (methyl methacrylate acrylic acid) a microspheres. J. Biotechnol. 60: 37-46. https://doi.org/10.1016/S0168-1656(97)00179-X
  2. Bagi, K., L. M. Simon, and B. Szajani. 1997. Immobilization and characterization of porcine pancreas lipase. Enzyme Microb. Technol. 20: 531-535. https://doi.org/10.1016/S0141-0229(96)00190-1
  3. Balcao, V. M., A. L. Paiva, and F. X. Malcata. 1996. Bioreactors with immobilized lipases: State of art. Enzyme Microb. Technol. 18: 392-396. https://doi.org/10.1016/0141-0229(95)00125-5
  4. Berekaa, M. M., T. I. Zaghloul, Y. R. Abdel-Fattah, H. M. Saeed, and M. Sifour. 2009. Production of a novel glycerolinducible lipase from thermophilic Geobacillus stearothermophilus strain-5. World J. Microbiol. Biotechnol. 25: 287-294. https://doi.org/10.1007/s11274-008-9891-3
  5. Bickerstaff, G. F. 1997. Immobilization of enzymes and cells, pp.1-11. In G. F. Bickerstaff (ed.). Methods in Biotechnology, Vol. I. Humana Press INC., Totowa, New Jersey.
  6. Bismuto, E., P. L. Martelli, A. De Maio, D. G. Mita, G. Irace, and R. Gasadio. 2002. Effect of molecular confinement on internal enzyme dynamics: Frequency domain fluorimetry and molecular dynamics simulation studies. Biopolymers 67: 85-95. https://doi.org/10.1002/bip.10058
  7. Borkar, P. S., R. G. Bodade, S. R. Rao, and C. N. Khobragade. 2009. Purification and characterization of extracellular lipase from a new strain, Pseudomonas aeruginosa SRT 9. Braz. J. Microbiol. 40: 358-366. https://doi.org/10.1590/S1517-83822009000200028
  8. Deng, H. T., Z. K. Xu, Z. W. Dai, J. Wu, and P. Seta. 2005. Immobilization of Candida rugosa lipase on polypropylene microfiltration membrane modified by glycopolymer: Hydrolysis of olive oil in biphasic bioreactor. Enzyme Microb. Technol. 36: 996-1002. https://doi.org/10.1016/j.enzmictec.2005.01.025
  9. Derewenda, U., A. M. Brzozowski, D. M. Lawson, and Z. S. Derewenda. 1992. Catalysis at the interface: The anatomy of a conformational change in a triglyceride lipase. Biochemistry 31: 1532-1541. https://doi.org/10.1021/bi00120a034
  10. Dey, G., B. Singh, and R. Banerjee. 2003. Immobilization of $\alpha$-amylase produced by Bacillus circulans GRS313. Braz. Arch. Biol. Technol. 46: 167-176.
  11. Eltaweel, M., R. N. Z. R. A. Rahman, A. B. Salleh, and M. Basri. 2005. An organic solvent stable lipase from Bacillus sp. strain 42. Ann. Microbiol. 55: 187-192.
  12. Fernandez-Lorente, G., J. M. Palomo, C. Matea, R. Munilla, C. Ortiz, and Z. Cabrera. 2006. Glutaraldehyde crosslinking in the presence of detergents of lipases adsorbed on aminated supports: Improving lipases performance. Biomacromolecules 7: 2610-2615. https://doi.org/10.1021/bm060408+
  13. Gianfreda, L., M. Modafferi, and Jr. G. Greco. 1985. Enzyme stabilization towards chemical, thermal and proteolytic deactivation. Enzyme Microb. Technol. 7: 78-82. https://doi.org/10.1016/0141-0229(85)90017-1
  14. Gomes, F. M., E. B. Pereira, and F. H. Decastro. 2004. Immobilization of lipase on chitin and its use in nonconventional biocatalysis. Biomacromolecules 5: 17-23. https://doi.org/10.1021/bm0342077
  15. Guisan, J., R. Fernandez-Lafuente, V. Rodriguez, A. Bastida, and G. Alvaro. 1993. Enzyme stabilization by multipoint covalent attachment to activated pre-existing supports, p. 55-62. In W. Van der Tweel, A. Harder, and R. Buitelar (eds.). Stability and stabilization of enzymes. Elsevier, Amsterdam.
  16. Guncheva, M., D. Zhiryakova, N. Radchenkova, and M. Kombourova. 2009. Properties of immobilized lipase from Bacillus stearothermophilus MC7. Acidolysis of triolein with caprylic acid. World J. Microbiol. Biotechnol. 25: 727-731. https://doi.org/10.1007/s11274-008-9929-6
  17. Guo, Z., S. Bai, and Y. Sun. 2003. Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enz. Microb. Technol. 32: 776-782. https://doi.org/10.1016/S0141-0229(03)00051-6
  18. Huang, X. J., A. G. Yu, and Z. K. Xu. 2008. Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour. Technol. 99: 5459-5465. https://doi.org/10.1016/j.biortech.2007.11.009
  19. Iyer, P. V. and L. Ananthanarayan. 2008. Enzyme stability and stabilization - Aqueous and non-aqueous environment. Process Biochem. 43: 1019-1032. https://doi.org/10.1016/j.procbio.2008.06.004
  20. Janssen, M. H. A., L. M. van Langen, S. R. M. Pereira, F. van Rantwijk, and R. A. Sheldon. 2002. Evaluation of the performance of immobilized penicillin G acylase using active-site titration. Biotechnol. Bioeng. 78: 425-432. https://doi.org/10.1002/bit.10208
  21. Khan, M. Y., M. U. Dahot, and M. H. Noomrio. 1991. Investigation of lipase activity from Cajanus cajan seed. Pak. J. Sci. Ind. Res. 34: 384-386.
  22. Kose, O., M. Tuter, and H. A. Aksoy. 2002. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in solvent-free medium. Bioresour. Technol. 83: 125-129. https://doi.org/10.1016/S0960-8524(01)00203-6
  23. Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent J. Biol. Chem. 193: 265-276.
  24. Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
  25. Mingarro, I., C. Abat, and L Braco. 1995. Interfacial activationbased molecular bioimprinting of lipolytic enzyme. Proc. Natl. Acad. Sci. U.S.A. 92: 3308. https://doi.org/10.1073/pnas.92.8.3308
  26. Naim, N., N. Z. Adham, E. A. Elsayed, E. M. Ahmed, and H. M. Ahmed. 2009. Optimization of lipase synthesis by Mucor racemosus: Production in a triple impeller bioreactor. Malaysian J. Microbiol. [In Press].
  27. Noureddini, H., X. Gao, and R. S. Philkana. 2005. Immobilized Pseudomomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 96: 769-777. https://doi.org/10.1016/j.biortech.2004.05.029
  28. Palomo, J. M., M. Fuentes, G. Fernandez-Lorente, G. Mateo, J. M. Guisan, and R. Fernandez-Lafuente. 2003. General trend of lipase to self-assemble giving bimolecular aggregate greatly modifies the enzyme functionality. Biomacromolecules 4: 1-6. https://doi.org/10.1021/bm025729+
  29. Parry, R. M., R. C. Chandan, and K. M. Shahani. 1966. Rapid and sensitive assay for milk lipase. J. Dairy Sci. 49: 356-360. https://doi.org/10.3168/jds.S0022-0302(66)87874-8
  30. Pimentel, M.C.B., A. B. F. Leao, E. H. M. Melo, W. M. Ledingham, J. L. Lima Filho, and J. F. Kennedy. 2006. Immobilization of Penicillium citrinum lipase on ferromagnetic azide-Dacron. Biotechnology 3: 228-233.
  31. Reetz, M. T. 1997. Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv. Mater. 9: 943-954. https://doi.org/10.1002/adma.19970091203
  32. Rodrigues, D. S., A. A. Mendes, W. S. Adriano, L. R. B. Goncalves, and R. L. C. Giordano. 2008. Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J. Mol. Catal. B Enz. 51: 100-109. https://doi.org/10.1016/j.molcatb.2007.11.016
  33. Serra, S., E. Brenna, C. Fuganti, and F. Maggioni. 2003. Lipasecatalyzed resolution of p-menthan-3-ols monoterpenes: Preparation of the enantiomer-enriched forms of methanol, isopulegol, transand cis-piperitol, and cis-isopiperitenol. Tetrahedr. Asymmetr. 14: 3313-3319. https://doi.org/10.1016/j.tetasy.2003.08.010
  34. Sharma, A. and S. Chattopadhyay. 2000. Enantio-reversal in Candida rugosa-catalyzed esterification of 3-hydroxybutryric acid. J. Mol. Catal. B Enz. 10: 531-534. https://doi.org/10.1016/S1381-1177(00)00095-3
  35. Sharma, R., Y. Chisti, and U. C. Benerjee. 2001. Production, characterization, and applications of lipases. Biotechnol. Adv. 19: 627-662. https://doi.org/10.1016/S0734-9750(01)00086-6
  36. Soares, C. M. F., O. A. A. Santos, H. F. de Castro, F. F. Moraes, and G. M. Zanin. 2006. Characterization of sol-gel encapsulated lipase using tetraethoxysilane as precursor. J. Mol. Catal. B Enz. 39: 69-76. https://doi.org/10.1016/j.molcatb.2006.01.005
  37. Verger, R. 1997. Interfacial activation of lipases: Facts and artifacts. Trends Biotechnol. 15: 32-83. https://doi.org/10.1016/S0167-7799(96)10064-0
  38. Weber, N. and K. D. Mukherjee. 2004. Solvent-free lipasecatalyzed preparation of diacylglycerols. J. Agric. Food Chem. 52: 5347-5353. https://doi.org/10.1021/jf0400819
  39. Woodward, J. 1985. Immobilized enzymes: Adsorption and covalent binding, pp. 3. In J. Woodward (ed.). Immobilized Cell and Enzymes. Oxford, IRL Press, Washington, DC.

Cited by

  1. Significant stabilization of ribonuclease A by additive effects vol.279, pp.14, 2010, https://doi.org/10.1111/j.1742-4658.2012.08632.x
  2. Ultrasound-assisted dextranase entrapment onto Ca-alginate gel beads vol.20, pp.4, 2010, https://doi.org/10.1016/j.ultsonch.2012.11.016
  3. Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel vol.21, pp.4, 2010, https://doi.org/10.1016/j.ultsonch.2014.02.004
  4. Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29 vol.19, pp.4, 2010, https://doi.org/10.1007/s00792-015-0757-y
  5. Molecular Determinants for Protein Stabilization by Insertional Fusion to a Thermophilic Host Protein vol.16, pp.16, 2010, https://doi.org/10.1002/cbic.201500310
  6. Agarose Hydrogel Beads: An Effective Approach to Improve the Catalytic Activity, Stability and Reusability of Fungal Amyloglucosidase of GH15 Family vol.148, pp.9, 2010, https://doi.org/10.1007/s10562-018-2460-y
  7. Improvement of Activity and Thermostability of Agar-Entrapped, Thermophilic, Haloalkaliphilic Amylase AmyD8 vol.148, pp.9, 2010, https://doi.org/10.1007/s10562-018-2493-2
  8. Immobilization of β‐1,4‐xylanase isolated from Bacillus licheniformis S3 vol.60, pp.7, 2010, https://doi.org/10.1002/jobm.202000077
  9. Thermo-alkali-stable lipase from a novel Aspergillus niger: statistical optimization, enzyme purification, immobilization and its application in biodiesel production vol.51, pp.3, 2021, https://doi.org/10.1080/10826068.2020.1805759