Browse > Article
http://dx.doi.org/10.4014/jmb.0907.07011

Production of 1,3-Dihydroxyacetone from Glycerol by Gluconobacter oxydans ZJB09112  

Hu, Zhong-Ce (Institute of Bioengineering, Zhejiang University of Technology)
Liu, Zhi-Qiang (Institute of Bioengineering, Zhejiang University of Technology)
Zheng, Yu-Guo (Institute of Bioengineering, Zhejiang University of Technology)
Shen, Yin-Chu (Institute of Bioengineering, Zhejiang University of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.2, 2010 , pp. 340-345 More about this Journal
Abstract
The culture variables were optimized to increase 1,3-dihydroxyacetone (DHA) production by Gluconohacter oxydans ZJB09112 in shake flasks and bubble column bioreactors. After fermentation in the optimized medium (g/l: yeast extract 5, glycerol 2.5, mannitol 22.5, $K_2HPO_4$ 0.5, $KH_2PO_4$ 0.5, $MgSO_4{\cdot}7H_2O$ 0.1, $CaCO_3$ 2.0, pH 5.0), when five times of glycerol feeding were applied, $161.9{\pm}5.9\;g/l$ of DHA was attained at a $88.7{\pm}3.2%$ conversion rate of glycerol to DHA.
Keywords
1,3-Dihydroxyacetone; Gluconobacter oxydans; glycerol; fed-batch fermentation; bubble column bioreactor;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Flickinger, M. C. and D. Perlman. 1977. Application of oxygenenriched aeration in the conversion of glycerol to dihydroxyacetone by Gluconobacter melanogenus IFO 3293. Appl. Environ. Microbiol. 33: 706-712
2 Hekmat, D., R. Bauer, and J. Fricke. 2003. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26: 109-116.   DOI   ScienceOn
3 Kantarci, N., F. Borak, and K. O. Ulgen. 2005. Bubble column reactors. Process Biochem. 40: 2263-2283.   DOI   ScienceOn
4 Maier, U. and J. Buchs. 2001. Characterisation of the gasliquid mass transfer in shaking bioreactors. Biochem. Eng. J. 7: 99-106.   DOI   ScienceOn
5 Rajatanavin, N., S. Suwanachote, and S. Kulkollakarn. 2008. Dihydroxyacetone: A safe camouflaging option in vitiligo. Int. J. Dermatol. 47: 402-406.   DOI   ScienceOn
6 Rollini, M. and M. Manzoni. 2005. Bioconversion of D-galactitol to tagatose and dehydrogenase activity induction in Gluconobacter oxydans. Process Biochem. 40: 437-444.   DOI   ScienceOn
7 Wang, L. L., J. Qian, Z. C. Hu, Y. G. Zheng, and W. Hu. 2006. Determination of dihydroxyacetone and glycerol in fermentation broth by pyrolytic methylation/gas chromatography. Anal. Chim. Acta 557: 262-266.   DOI
8 Fregapane, G., H. Rubio-Fernandez, and M. D. Salvador. 2003. Continuous production of wine vinegar in bubble column reactors of up to 60-litre capacity. Eur. Food Res. Technol. 216: 63-67.
9 Burton, S. G. 2001. Development of bioreactors for application of biocatalysts in biotransformations and bioremediation. Pure Appl. Chem. 73: 77-83.   DOI   ScienceOn
10 Claret, C., A. Bories, and P. Soucaille. 1992. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Curr. Microbiol. 25: 149-155.   DOI
11 Stanko, R. T., T. L. Ferguson, C. W. Newman, and R. K. Newman. 1989. Reduction of carcass fat in swine with dietary addition of dihydroxyacetone and pyruvate. J. Anim. Sci. 67: 1272-1278.
12 Prust, C., M. Hoffmeister, H. Liesegang, A. Wiezer, W. F. Fricke, A. Ehrenreich, G. Gottschalk, and U. Deppenmeier. 2005. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat. Biotechnol. 23: 195-200.   DOI   ScienceOn
13 Prasad, S., R. Banerjee, and B. C. Bhattacharyya. 1995. Production of proteolytic-enzyme by Rhizopus oryzae in a bubble-column bioreactor. Bioprocess Eng. 13: 41-43.   DOI   ScienceOn
14 Svitel, J. and E. Sturdik. 1994. Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans. J. Ferment. Bioeng. 78: 351-355.   DOI   ScienceOn
15 Levy, S. B. 1992. Dihydroxyacetone-containing sunless or selftanning lotions. J. Am. Acad. Dermatol. 27: 989-993.   DOI   ScienceOn
16 Mishra, R., S. R. Jain, and A. Kumar. 2008. Microbial production of dihydroxyacetone. Biotechnol. Adv. 26: 293-303.   DOI
17 Wei, S. H., Q. X. Song, and D. Z. Wei. 2007. Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone. Prep. Biochem. Biotechnol. 37: 67-76.   DOI   ScienceOn
18 Enders, D., M. Voith, and A. Lenzen. 2005. The dihydroxyacetone unit - a versatile C3 building block in organic synthesis. Angew. Chem. Int. Edit. 44: 1304-1325.   DOI   ScienceOn
19 Klein, J., M. Rosenberg, J. Markos, O. Dolgos, M. Kroslak, and L. Kristofikova. 2002. Biotransformation of glucose to gluconic acid by Aspergillus niger: Study of mass transfer in an airlift bioreactor. Biochem. Eng. J. 10: 197-205.   DOI   ScienceOn
20 Liu, Z. Q., Z. C. Hu, Y. G. Zheng, and Y. C. Shen. 2008. Optimization of cultivation conditions for the production of 1,3-dihydroxyacetone by Pichia membranifaciens using response surface methodology. Biochem. Eng. J. 38: 285-291.   DOI   ScienceOn
21 Hu, Z. C. and Y. G. Zheng. 2009. A high throughput screening method for 1,3-dihydroxyacetone-producing bacterium by cultivation in a 96-well microtiter plate. J. Rapid Methods Autom. Microbiol. 17: 233-241.   DOI   ScienceOn
22 Nguyen, B. C. and I. E. Kochevar. 2003. Factors influencing sunless tanning with dihydroxyacetone. Br. J. Dermatol. 149: 332-340.   DOI   ScienceOn
23 Orejas, J. A. 1999. Modelling and simulation of a bubblecolumn reactor with external loop: Application to the direct chlorination of ethylene. Chem. Eng. Sci. 54: 5299-5309.   DOI   ScienceOn
24 White, S. A. and G. W. Claus. 1982. Effect of Intracytoplasmic membrane development on oxidation of sorbitol and other polyols by Gluconobacter oxydans. J. Bacteriol. 150: 934-943.
25 Hosseini, M., S. A. Shojaosadati, and J. Towfighi. 2003. Application of a bubble-column reactor for the production of a single-cell protein from cheese whey. Ind. Eng. Chem. Res. 42: 764-766.   DOI   ScienceOn
26 Claret, C., A. Bories, and P. Soucaille. 1993. Inhibitory effect of dihydroxyacetone on Gluconobacter oxydans: Kinetic aspects and expression by mathematical equations. J. Ind. Microbiol. 11: 105-112.   DOI
27 Bauer, R., N. Katsikis, S. Varga, and D. Hekmat. 2005. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeatedfed-batch process. Bioprocess Biosyst. Eng. 28: 37-43.   DOI   ScienceOn
28 Boontawan, A. and D. Stuckey. 2006. A membrane bioreactor for the biotransformation of alpha-pinene oxide to isonovalal by Pseudomonas fluorescens NCIMB 11671. Appl. Microbiol. Biotechnol. 69: 643-649.   DOI   ScienceOn
29 Claret, C., J. M. Salmon, C. Romieu, and A. Bories. 1994. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl. Microbiol. Biotechnol. 41: 359-365.   DOI   ScienceOn
30 Gatgens, C., U. Degner, S. Bringer-Meyer, and U. Herrmann. 2007. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl. Microbiol. Biotechnol. 76: 553-559.   DOI   ScienceOn
31 Zheng, Y. G., X. L. Chen, and Y. C. Shen. 2008. Commodity chemicals derived from glycerol, an important biorefinery feedstock. Chem. Rev. 108: 5253-5277.