DOI QR코드

DOI QR Code

Biotransformation of Amides to Acids Using a Co-Cross-Linked Enzyme Aggregate of Rhodococcus erythropolis Amidase

  • Published : 2010.02.28

Abstract

Rhodococcus erythropolis amidase was expressed in Escherichia coli cells. The crude amidase in the cell-free extract was immobilized using the cross-linked enzyme aggregate (CLEA) method. The crude amidase was mixed with bovine serum albumin and then precipitated with ammonium sulfate. The resultant precipitant was subsequently cross-linked with glutaraldehyde. Scanning electron microscopy revealed that this co-CLEA had a ball-like shape with a diameter of approximately $1\;{\mu}m$. This co-CLEA evidenced hydrolytic activity toward a variety of amide substrates. The amidase co-CLEA evidenced an optimum temperature of $60^{\circ}C$ and an optimum pH of 8.0, results that were similar to those of the soluble amidase. The reaction stability of the co-CLEA was increased. That is, it was stable up to $50^{\circ}C$ and in a pH range of 5.0-12.0. Additionally, the co-CLEA could be recovered by centrifugation, and retained 96% activity after 3 repeated cycles. This amidase co-CLEA may prove useful as a substitute for soluble amidase as a biocatalyst in the pharmaceutical and chemical industries.

Keywords

References

  1. Banerjee, A., R. Sharma, and U. C. Banerjee. 2002. The nitriledegrading enzymes: Current status and future prospects. Appl. Microbiol. Biotechnol. 60: 33-44. https://doi.org/10.1007/s00253-002-1062-0
  2. Brady, D., A. Beeton, J. Zeevaart, C. Kgaje, F. van Rantwijk, and R. A. Sheldon. 2004. Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl. Microbiol. Biotechnol. 64: 76-85. https://doi.org/10.1007/s00253-003-1495-0
  3. Cao, L., F. van Rantwijk, and R. Sheldon. 2000. Cross-linked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase. Org. Lett. 2: 1361-1364. https://doi.org/10.1021/ol005593x
  4. Choi, Y. H., K. N. Uhm, and H. K. Kim. 2008. Biochemical characterization of Rhodococcus erythropolis N'4 nitrile hydratase acting on 4-chloro-3-hydroxybutyronitrile. J. Mol. Catal. B Enz. 55: 157-163. https://doi.org/10.1016/j.molcatb.2008.03.010
  5. Gupta, P., K. Dutt, S. Misra, S. Raghuwanshi, and R. K. Saxena. 2009. Characterization of cross-linked immobilized lipase from thermophilic mould Thermomyces lanuginosa using glutaraldehyde. Bioresour. Technol. 100: 4074-4076. https://doi.org/10.1016/j.biortech.2009.03.076
  6. Hughes, J., Y. C. Armitage, and K. C. Symes. 1998. Application of whole cell rhodococcal biocatalysts in acrylic polymer manufacture. Antonie Van Leeuwenhoek 74: 107-118. https://doi.org/10.1023/A:1001716332272
  7. Fawcett, J. K. and J. E. Scott. 1960. A rapid and precise method for the determination of urea. J. Clin. Pathol. 13: 156-159. https://doi.org/10.1136/jcp.13.2.156
  8. Guisan, J. M. 1988. Aldehyde gels activated support for immobilization stabilization of enzyme. Enzyme Microb. Technol. 10: 375-382. https://doi.org/10.1016/0141-0229(88)90018-X
  9. Lopez-Gallego, F., L. Betancor, A. Hidalgo, N. Alonso, R. Fernandez-Lafuente, and J. M. Guisan. 2005. Co-aggregation of enzymes and polyethyleneimine: A simple method to prepare stable immobilized derivatives of glutaryl acylase without support. Biomacromolecules 6: 1839-1842. https://doi.org/10.1021/bm050088e
  10. Lopez-Serrano, P., L. Cao, F. van Rantwijk, and R. A. Sheldon. 2002. Cross-linked enzyme aggregates with enhanced activity: Application to lipases. Biotechnol. Lett. 24: 1379-1383. https://doi.org/10.1023/A:1019863314646
  11. Mateo, C., O. Abian, R. Fernandez-Lafuente, and J. M. Guisan. 2000. Reversible enzyme immobilization via a very strong and non-distorting adsorption on supports-polyethyleneimine composites. Biotechnol. Bioeng. 68: 98-105. https://doi.org/10.1002/(SICI)1097-0290(20000405)68:1<98::AID-BIT12>3.0.CO;2-T
  12. Mateo, C., J. M. Palomo, L. M. van Langen, F. van Rantwijk, and R. A. Sheldon. 2004. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol. Bioeng. 86: 273-276. https://doi.org/10.1002/bit.20033
  13. Palomo, J. M., G. Munoz, G. Fernandez-Lorente, C. Mateo, R. Fernandez-Lafuente, and J. M. Guisan. 2002. Interfacial adsorption of lipases on very hydrophobic support (octadecyl Sepabeads): Immobilization, hyperactivation and stabilization of the open form of lipases. J. Mol. Catal. B Enz. 19: 279-286. https://doi.org/10.1016/S1381-1177(02)00178-9
  14. Park, H. J., K. N. Uhm, and H. K. Kim. 2008. R-Stereoselective amidase from Rhodococcus erythropolis No. 7 acting on 4-chloro-3-hydroxybutyramide. J. Microbiol. Biotechnol. 18: 552-559.
  15. Sangeetha, K. and T. E. Abraham. 2008. Preparation and characterization of cross-linked enzyme aggregates (CLEA) of subtilisin for controlled release applications. Int. J. Biol. Macromol. 43: 314-319. https://doi.org/10.1016/j.ijbiomac.2008.07.001
  16. Schoevaart, R., M. W. Wolbers, M. Golubovic, M. Ottens, A. P. G. Kieboom, F. van Rantwijk, L. A. M. van der Wielen, and R. A. Sheldon. 2004. Preparation, optimization and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol. Bioeng. 87: 754-762. https://doi.org/10.1002/bit.20184
  17. Shah, S., A. Sharma, and M. N. Gupta. 2006. Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal. Biochem. 351: 207-213. https://doi.org/10.1016/j.ab.2006.01.028
  18. Torres, R., C. Mateo, M. Fuentes, J. M. Palomo, C. Ortiz, R. Fernandez-Lafuente, J. M. Guisan, A. Tam, and M. Daminati. 2002. Reversible immobilization of invertase on Sepabeadspolyethyleneimine: Stabilization of a multimeric enzyme. Biotechnol. Progr. 18: 1221-1226. https://doi.org/10.1021/bp020082q
  19. Wilson, L., A. Illanes, O. Abian, B. C. C. Pessela, R. Fernandez-Lafuente, and J. M. Guisan. 2004. Co-aggregation of penicillin G acylase and polyionic polymers: A simple methodology to prepare enzyme biocatalysts stable in organic media. Biomacromolecules 5: 852-857. https://doi.org/10.1021/bm0343895
  20. Yamada, H. and M. Kobayashi. 1996. Nitrile hydratase and its application to industrial production of acrylamide. Biosci. Biotech. Biochem. 60: 1391-1400. https://doi.org/10.1271/bbb.60.1391
  21. Yamamoto, K., K. Oishi, I. Fujimatsu, and K. Komatsu. 1991. Production of (R)-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol. 57: 3028-3032.