DOI QR코드

DOI QR Code

Tyrosinase-Immobilized Biosensor Based on Ionic Property-Modified MWNTs Prepared by Radiation-Induced Graft Polymerization

  • Received : 2010.07.26
  • Accepted : 2010.09.02
  • Published : 2010.09.30

Abstract

Two-types of ionically modified multi-walled carbon nanotube (MWNTs) based sensors were developed by radiationinduced graft polymerization using vinyl monomers such as 3-(butyl imidazol)-2-(hydroxyl)propyl methyl methacrylate and 1-[(4-ethenylphenyl)methyl]-3-buthyl-imidazolium chloride with ionic properties, in aqueous solution at room temperature. Subsequently, the tyrosinase-immobilized biosensor was fabricated by a hand-casting of the ionic property-modified MWNTs, tyrosinase, and chitosan solution as a binder onto ITO glass surface. The sensing ranges of the tyrosinase-biosensor for phenol in phosphate buffer solution was in the range of 0.005~0.2 mM. The total phenolic compounds mainly such as caffeine of the tyrosinase-immobilized biosensor for commercial coffee were also determined.

Keywords

References

  1. Choi, S.-H.; Kim, G. T.; Nho Y. C. J. Appl. Polym. Sci. 1999, 71, 643. https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<643::AID-APP16>3.0.CO;2-8
  2. Choi, S.-H.; Nho Y. C. J. Appl. Polym. Sci. 1999, 71, 999. https://doi.org/10.1002/(SICI)1097-4628(19990207)71:6<999::AID-APP15>3.0.CO;2-C
  3. Choi, S.-H.; Nho, Y. C. J. Appl. Polym. Sci. 1999, 71, 2227. https://doi.org/10.1002/(SICI)1097-4628(19990328)71:13<2227::AID-APP13>3.0.CO;2-S
  4. Choi, S.-H.; Nho, Y. C. Radiati. Phys. Chem. 2000, 57, 187. https://doi.org/10.1016/S0969-806X(99)00348-5
  5. Choi, S.-H. ; Lee, K. P. ; Lee, J. G. Microchem. J. 2001, 68, 205. https://doi.org/10.1016/S0026-265X(00)00154-5
  6. Piao, M. H.; Yang, D.S.; Yoon, K.R. ; Lee, S. ; Choi, S.-H. Sensors 2009, 9, 1662. https://doi.org/10.3390/s90301662
  7. Kim, K. I.; Lee, J. C. ; Robards, K. Choi, S.-H. JNN 2010, 10, 1. https://doi.org/10.1166/jnn.2010.1484
  8. Compton, D. L.; Laszlo, J. A. J. Electroanal. Chem. 2002, 520, 71. https://doi.org/10.1016/S0022-0728(01)00747-1
  9. Sweeny, B. K.; Peters, G. G. Electrochem. Commun. 2001, 3, 712. https://doi.org/10.1016/S1388-2481(01)00249-1
  10. Zhao, F.; Wu, X.; Wang, M.; Liu, Y.; Gao, L.; Dong, S. Anal. Chem. 2004, 76, 4960. https://doi.org/10.1021/ac0494026
  11. Li, J.; Yu, J.; Zhao, F.; Zeng, B. Anal. Chem. Acta 2007, 587, 33. https://doi.org/10.1016/j.aca.2007.01.014
  12. Sun, W.; Wang, D.; Gao, R.; Jiao, K. Electrochem. Commun. 2007, 9, 1159. https://doi.org/10.1016/j.elecom.2007.01.003
  13. Safavi, A.; Maleki, N.; Moradlou, O.; Sorouri, M. Electrochem. Commun. 2008, 10, 420. https://doi.org/10.1016/j.elecom.2007.12.026
  14. Ferreyra, C. F.; Ortiz, C. S. J. Pharm. Biomed. Anal. 2002, 29, 811. https://doi.org/10.1016/S0731-7085(02)00130-9
  15. Yi, Z.; Nitin, M.; Nageshwar. R. B.; Michael, L. C.; Bernd, M. Clinica Chimica Acta, 2008, 398, 105. https://doi.org/10.1016/j.cca.2008.08.023
  16. Shrivas, K.; Wu, H. F. J. Chromatogr. A 2007, 1170, 9. https://doi.org/10.1016/j.chroma.2007.09.020
  17. Song, S.; Ashley, D. L. J. Chromatogr. A 1998, 814, 171. https://doi.org/10.1016/S0021-9673(98)00384-7
  18. Verenitch, S. S.; Lowe C. J.; Mazumder, J. Chromatogr. A 2006, 1116, 193. https://doi.org/10.1016/j.chroma.2006.03.005
  19. Tzanavaras, T. D.; Themelis, D. G. Anal. Chim. Acta 2007, 581, 89. https://doi.org/10.1016/j.aca.2006.07.081
  20. Georga, K. A.; Samanidou,V. F.; Papadoyannis, I. N. J. Chromatogr. B: Biomed. Sci. Appl. 2001, 759, 209. https://doi.org/10.1016/S0378-4347(01)00251-1
  21. Kim, K. I.; Kang, H. Y.; Lee, J. C.; Choi, S.-H.. Sensors 2009, 9, 6701. https://doi.org/10.3390/s90906701
  22. Bara, J. E.; Gin, D. L.; Noble, R. D. Ind. Eng. Chem. Res. 2008, 47, 9919. https://doi.org/10.1021/ie801019x
  23. Yang, D. S.; Jung, D. J.; Choi, S.-H. Radia. Phys. Chem. 2010, 79, 434. https://doi.org/10.1016/j.radphyschem.2009.11.006
  24. Yang, J. H.; Lee, J. C.; Choi, S.-H. J. Sensors, 2009, 2009, 1.
  25. Espin, J. C.; Varon, R.; Fenoll, L. G.; Gilabert, M. A.; Garcia- Ruiz, P. A.; Tudele, J.; Canovas, F. Eur. J. Biochem. 2000, 267, 1270. https://doi.org/10.1046/j.1432-1327.2000.01013.x

Cited by

  1. Polymer-copper-modified MWNTs by radiation-induced graft polymerization and their efficient adsorption of odorous gases vol.126, pp.S2, 2012, https://doi.org/10.1002/app.35453
  2. Immobilization as a Strategy for Improving Enzyme Properties-Application to Oxidoreductases vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19078995
  3. Fabrication of a Microbial Biosensor Based on QD-MWNT Supports by a One-Step Radiation Reaction and Detection of Phenolic Compounds in Red Wines vol.11, pp.2, 2011, https://doi.org/10.3390/s110202001