DOI QR코드

DOI QR Code

Potential of Activated Carbon Derived from Local Common Reed in the Refining of Raw Cane Sugar

  • D-Abdullah, Ibrahim (Sugar and Integrated Industries) ;
  • Girgis, Badie S. (National Research Dokki) ;
  • Tmerek, Yassin M. (Faculty of Science, Assiut University) ;
  • Badawy, Elsaid H. (Delta Sugar Company)
  • Received : 2010.07.26
  • Accepted : 2010.08.30
  • Published : 2010.09.30

Abstract

Common reed (Fragmites australis), a local invasive grass, was investigated as a possible feedstock for the production of activated carbon. Dried crushed stems were subjected to impregnation with phosphoric acid (30, 40 and 50%) followed by pyrolysis at $400{\sim}500^{\circ}C$ with final washing and drying. Obtained carbons were characterized by determining: carbon yield, ash content, slurry pH, textural properties and capacity to remove color bodies from factory-grade sugar liquor. Produced carbons possessed surface area up to 700 $m^2/g$, total pore volumes up to 0.37 $cm^3/g$, and proved to be microporous in nature. Decolorization of hot sugar liquor at $80^{\circ}C$ showed degrees of color removal of 60 up to 77% from initial color of 1100~1300 ICU, at a carbon dose of 1.0 g/100 ml liquor. No correlation seems to hold between synthesis conditions and % R but depends on the degree of microporosity. A commercial activated carbon N showed a comparative better color removal capacity of 91%. Common reed proved to be a viable carbon precursor for production of good adsorbing carbon suitable for decolorization in the sugar industry, as well as in other environmental remediation processes.

Keywords

References

  1. Chen, J. C. P. "Cane Sugar Technology", 11th ed., Wiley Interscience Publications, John Wiley & Sons Inc., USA, 1985.
  2. Mersad, A.; Lewandowski, R.; Heyd, B.; Decloux, M. ISJ 2003, 105, 269.
  3. Clark, M. A.; Blanco R. S.; Godshall, M. A. ISSCT 1986, 4, 670.
  4. Riffer, R. Proc. SIT 1997, 716 (A), 114.
  5. Tatoud, I.; Jacob, S.; Liou, J. K.; Bento, S. M.; Decloux, M. Proc. SIT 1998, 741 (B), 223.
  6. Decloux, M.; Tatoud, I.; Mersad, A. Zuckerind 2000, 125,106.
  7. Lancrenon, X.; Herve, D.; Rousset, F. Proc. SIT 1998, 741 (B), 726.
  8. Lancrenon, X. ISJ 2003, 105, 390.
  9. Baikow, V. E. "Manufacture and refining of raw cane sugar", Amesterdam, Oxford, New York, 1982, 156.
  10. Van der Poel, P. W.; Schiweck, H.; Schwarz, T. "Sugar Technology : Beet and Cane Sugar Manufacture", Verlag Dr. Albert Bartens KG, Berlin. 1998.
  11. Girgis, B. S.; Khalil, L. B.; Tawfik, T. A. M. Adsorp. Sci. Technol. 2000, 18, 373. https://doi.org/10.1260/0263617001493495
  12. Girgis, B. S.; EL-Hendawy, A. N. A. Micropor. Mesopor. Mats. 2002, 52, 105. https://doi.org/10.1016/S1387-1811(01)00481-4
  13. Attia, A. A.; Girgis, B. S.; Khedr, S. A. J. Chem. Technol. Biotechnol. 2003, 78, 611. https://doi.org/10.1002/jctb.743
  14. Attia, A. A.; Girgis, B. S.; Tawfik N. A. F., Carbon Sci. 2005, 6, 1.
  15. Kobya, M.; Demirbas, E.; Senlurk, E.; Ince, M. Bioresource Technol. 2005, 96, 1518. https://doi.org/10.1016/j.biortech.2004.12.005
  16. Wartelle, L. H.; Marshall, W. E. J. Chem. Technol. Biotechnol. 2001, 76, 451. https://doi.org/10.1002/jctb.408
  17. Girgis, B. S.; Yunis, S. S.; Soliman, A. M. Materials Letts. 2002, 57, 146. https://doi.org/10.1016/S0167-577X(02)00721-8
  18. Warhurst A. M.; McConnachie, G. L.; Pollard, S. J. T. Water Res., 1997, 31, 757.
  19. Kalavathy, M. H.; Karthikeyan, T.; Rajgopal, S.; Miranda, R. J. Colloid Inter. Sci. 2005, 292, 354. https://doi.org/10.1016/j.jcis.2005.05.087
  20. de Celis, J.; Amadeo, N. E.; Cukierman, A. L. J. Hazard. Mats. 2009, 16, 217.
  21. Gomez-Serano, V.; Cuerde-Correa, E. M.; Fernandez-Gonzalez, M. C.; Alexandre-Franco, M. F.; Macias-Garcia, A. Materials Letts. 2005, 59, 846. https://doi.org/10.1016/j.matlet.2004.10.064
  22. Girgis, B. S.; Smith, E.; Louis, M. M.; EL-Hendawy, A. N. A. J. Anal. Appl. Pyr. 2009, 86, 180. https://doi.org/10.1016/j.jaap.2009.06.002
  23. Guo, Y.; Yu, K.; Wang, Z.; Xu, H. Carbon 2000, 41, 1645.
  24. Rashwan, W. E.; Girgis, B. S. Adsorp. Sci. Technol. 2004, 22, 181. https://doi.org/10.1260/0263617041503471
  25. Marshall, W. E.; Ahmedna, M.; Rao, R. M.; Johns, M. M. Int. Sugar JNL 2000, 102, 147.
  26. Tseng, R.-L.; Tseng, S.-K. J. Coll. Interface Sci. 2005, 287, 428. https://doi.org/10.1016/j.jcis.2005.02.033
  27. Basso, M. C.; Cerella, E. G.; Cukierman, A. L. Ind. Eng. Chem. Res. 2002, 41, 180. https://doi.org/10.1021/ie010664x
  28. Byrne, J. F.; Marsh, H. "Porosity in activated carbons", Ed. J.W. Patrick, Edward Arnold Inc., London, 1995.
  29. Puziy, A. M.; Poddubnaya, O. I.; Martinez-Alonso, A.; Suarez-Garcia, F.; Tascon,J. M. D. Appl. Surf. Sci. 2002, 200, 196. https://doi.org/10.1016/S0169-4332(02)00883-8
  30. Puziy, A. M.; Poddubnaya, O. I.; Martinez-Alonso, A.; Suarez-Gorcia, F.; Tascon, J. M. D. Carbon 2005, 43, 2857. https://doi.org/10.1016/j.carbon.2005.06.014
  31. IUPAC Pure & Appl. Chem. 1994, 66, 1739. https://doi.org/10.1351/pac199466081739
  32. Selles-Perez, M. J.; Martin-Martinez, J. M. J. Chem. Soc. Faraday Trans. 1991, 87, 1237. https://doi.org/10.1039/ft9918701237

Cited by

  1. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications vol.15, pp.2, 2014, https://doi.org/10.5714/CL.2014.15.2.089