DOI QR코드

DOI QR Code

Effect of Steam Activation Parameters on Characteristics of Pine Based Activated Carbon

  • Manocha, S.M. (Department of Materials Science, Sardar Patel University) ;
  • Patel, Hemang (Department of Materials Science, Sardar Patel University) ;
  • Manocha, L.M. (Department of Materials Science, Sardar Patel University)
  • Received : 2010.04.28
  • Accepted : 2010.07.21
  • Published : 2010.09.30

Abstract

Activated carbons are well known as adsorbents for gases and vapors. Micro porous carbons are used for the sorption/separation of light gases, whereas, carbon with bigger pore size are applied for removal of large molecules. Therefore, the control of pore size of activated carbon plays a vital role for their use in specific applications. In the present work, steam activation parameters have been varied to control pore size of the resulting activated carbon. It was found that flow rate of steam has profound effect on both surface characteristic and surface morphology. The flow rate of steam was optimized to retain monolith structure as well as higher surface area.

Keywords

References

  1. Dubini, M. M.; Serpinski, V. V. Carbon 1981, 19, 402 https://doi.org/10.1016/0008-6223(81)90066-X
  2. Gergova, K.; Eser, S. Carbon 1996, 34, 879. https://doi.org/10.1016/0008-6223(96)00028-0
  3. Philip, C. A.; Girgis, B. S. J. Chem. Technol. Biotechnol.1996, 67, 248. https://doi.org/10.1002/(SICI)1097-4660(199611)67:3<248::AID-JCTB557>3.0.CO;2-1
  4. Daifullah, A. A. M.; Girgis, B. S. Water Research 1998, 32, 1169. https://doi.org/10.1016/S0043-1354(97)00310-2
  5. Toles, C. A.; Marshall, W. E; Johns, M. M. J. Chem. Technol. Biotechnol. 1998, 72, 255. https://doi.org/10.1002/(SICI)1097-4660(199807)72:3<255::AID-JCTB890>3.0.CO;2-P
  6. Toles, C. A .; Marshall, W. E; Johns, M. M. Carbon 1999, 37, 1207. https://doi.org/10.1016/S0008-6223(98)00315-7
  7. Ahmedna, M.; Marshall, W. E ; Rao, R. M. Biores. Technol. 2000, 71, 113. https://doi.org/10.1016/S0960-8524(99)00070-X
  8. Juang, R. S.; Wu, F. C.; Tseng R. L. J. Col. Inter. Sci. 2000, 277, 437.
  9. Diao, Y.; Walawender, W. P.; Fan, L. T. Biores. Technol. 2002, 81, 45. https://doi.org/10.1016/S0960-8524(01)00100-6
  10. Kennedy, J.; Mohan, K. das.; Sekaran, G. Carbon 2004, 42, 2399. https://doi.org/10.1016/j.carbon.2004.04.002
  11. Nagano, H.; Tamon, T.; Adzumi, K. N.; Suzuki, T. Carbon, 2000, 38, 915. https://doi.org/10.1016/S0008-6223(99)00208-0
  12. Nakagawa K.; Namba, A.; Mukai, S. R.; Tamon, H.; Ariyadejwanich, P.; Tanthapanichakoon, W. Water Research 2004, 38, 1791. https://doi.org/10.1016/j.watres.2004.01.002
  13. Rozada, M.; Otero, J. B.; Parra, A. M.; Garcia, A. I. Chem. Eng. J. 2005, 114, 161. https://doi.org/10.1016/j.cej.2005.08.019
  14. Tanthapanichakoon, W.; Ariyadejwanich, P.; Jathong, P.; Nakagawa, K.; Mukai, S. R.; Tamon, H. Water Research 2005, 39, 1347. https://doi.org/10.1016/j.watres.2004.12.044
  15. Zhang, F. S.; Nriagu J. O.; Itoh, H. Water Research 2005, 39, 389. https://doi.org/10.1016/j.watres.2004.09.027
  16. Smisek, M.; Cerny, S. "Active Carbon Manufacture Properties and Application", Elsevier, Amsterdam, 1970
  17. Bansal, R. C.; Donnet, J. B.; Stoeckeli, F. "Active Carbon", Marcel Dekker, New York, 1998.
  18. Wigmans, T. Carbon 1989, 27, 13. https://doi.org/10.1016/0008-6223(89)90152-8
  19. Laine, J.; Yunes, S. Carbon 1992, 30, 601. https://doi.org/10.1016/0008-6223(92)90178-Y
  20. Jagtoyen, M.; Derbyshire, F. Carbon 1993, 31,1185 https://doi.org/10.1016/0008-6223(93)90071-H
  21. Benadd , H.; Legras, D.; Rouzaud, J. N.; Beguin, F. Carbon 1998, 36, 306. https://doi.org/10.1016/S0008-6223(98)80123-1
  22. Fogler, H. S. "Elements of Chemical Reaction Engineering", PTR Prentice-Hall, 1992.
  23. Gonzalez-Vilchez, A.; Linares-Solano, J.; Lopez-Gonzales, D. Carbon 1979, 17, 441 https://doi.org/10.1016/0008-6223(79)90031-9
  24. Gergova K.; Galushko, A.; Petrov, N.; Minkova, V. Carbon, 1992, 30,721 https://doi.org/10.1016/0008-6223(92)90154-O
  25. Gonzalez,M.T.; Molina M.; Sabio, Rodriguez-Reinoso, F. Ext. Abst. of Carbon 92, Essen, 1992, 314.
  26. Zimmerman, J. R.; Ghosh, U.; Millward, R. N.; Bridges, T. S.; Luthy, R. G. Biores. Technol. 2004, 38, 5458.
  27. Millward, R. N.; Bridges, T. S.; Ghosh, U.; Zimmerman, J. R., Luthy. R. G. Environ. Sci. Technol. 2005, 39, 2880. https://doi.org/10.1021/es048768x
  28. Pereira, M. F. R.; Soares, S. F.; Orfao, J. J. M.; Figueiredo, J. L. Carbon 2003, 41, 811. https://doi.org/10.1016/S0008-6223(02)00406-2
  29. Moreno-Castilla, C. Carbon 2004, 42, 83. https://doi.org/10.1016/j.carbon.2003.09.022
  30. Walker, P. L.; Rusinko, Jr. F.; Austin, Jr. Advanced in Catalysis 1959, 11, 133. https://doi.org/10.1016/S0360-0564(08)60418-6

Cited by

  1. Preparation and characterization of nanoporous carbons from thermoplastic acrylic resin for an electric double layer capacitor vol.20, pp.10, 2012, https://doi.org/10.1007/s13233-012-0155-6
  2. Preparation and Characterization of Coaltar Pitch-based Activated Carbon Fibers(I) -Effect of Steam Activation Temperature on Textural Properties of Activated Carbon Fibers- vol.51, pp.4, 2014, https://doi.org/10.12772/TSE.2014.51.174