MR제어기의 마찰력비에 따른 단자유도 구조물의 응답감소

Response Reduction of a SDOF Structure based on Friction Force Ratio of MR Controller

  • 투고 : 2010.07.12
  • 심사 : 2010.08.06
  • 발행 : 2010.08.31

초록

본 연구에서는 MR(Magneto-Reological)제어기가 설치된 단자유도 구조물의 응답을 예측하기 위하여 구조물의 운동방정식을 해석적으로 분석하고 주요변수를 파악하였다. MR제어기의 수치 모델로는 마찰 및 점성감쇠로 단순모델한 Bingham모델을 사용하였다. 자유진동과 조화진동일때의 응답감쇠를 결정짓는 주요변수가 각각 마찰력과 최대정적복원력의 비 $R_f$, 마찰력과 최대조화가진력의 비 $R_h$ 임을 파악하였다. 비선형 미분방정식을 등가의 선형 미분방정식으로 변환하기 위하여 마찰력에 의한 에너지 소산을 등가의 점성에너지로 치환하여 등가점성감쇠와 등가점성감쇠비를 유도하였다. 마지막으로 등가선형화과정을 검증하기 위하여 실제 지진에 대한 구조물의 응답을 비선형 미분방정식의 해와 비교하였다.

This study presents key parameters for the structure installed with MR controller in reducing its responses. MR controller is regarded as Bingham model of which control forces are frictional and viscous ones. The parameters are identified as friction force ratios, $R_f$ and $R_h$ which are, respectively, ratio of MR controller friction force to static restoring force for free vibration and ratio of the friction force to amplitude of harmonic force. Structure-MR controller system shows nonlinear response behavior due to friction force. Energy balance strategy is adopted to transform the behavior to linear one with equivalent damping ratio. Finally, proposed equivalent linear process is compared to the nonlinear one, which turns out to give acceptably good results.

키워드

참고문헌

  1. 민경원, 성지영 (2010) 단자유도 구조물의 지진응답제어를 위한 마찰감쇠기 설계, 한국소음진동공학회 논문집, 20(1), pp.22-28.
  2. 민경원, 성지영, 이성경 (2009) 마찰감쇠기가 설치된 구조물 응답의 근사해 : 재고찰 및 새로운 결과, 한국소음진동공학회 2009 추계 학술발표대회 논문집, pp.850-854.
  3. 정희산, 민경원 (2009) 인방보에 마찰형 제어기가 설치된 전단벽의 제진효과, 한국전산구조공학회 논문집, 22(1), pp.105-115.
  4. Chopra, A.K. (2001) Dynamics of Structures, Prentice- Hall, U.S.A., p.844.
  5. Den Hartog, J.P. (1931) Forced Vibrations with Combined Coulomb and Viscous Friction, Trans. ASME, 53, pp.107-115.
  6. Dyke, S.J., Spencer, Jr.B.F., Sain, M.K, Carlson, J.D. (1996) Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction, Smart Materials and Structures, 5, pp.565-575. https://doi.org/10.1088/0964-1726/5/5/006
  7. Feeny, B.F., Liang, J.W. (1996) A decrement Method for the Simultaneous Estimation of Coulomb and Viscous Friction, Journal of Sound and Vibration, 195(1), pp.149-154. https://doi.org/10.1006/jsvi.1996.0411
  8. Gamota, D.R., Filisko, F.E. (1991) Dynamic Mechanical Studies of Electroreological Materials: Moderate Frequencies, Journal of Rheology, 35, pp.399-425. https://doi.org/10.1122/1.550221
  9. Hundal, M.S. (1979) Response of a Base Excited System with Coulomb Viscous Friction, Journal of Sound and Vibration, 64, pp.371-378. https://doi.org/10.1016/0022-460X(79)90583-2
  10. Liang, J.W. (2005) Identifying Coulomb and Viscous Damping from Free-Vibratio Acceleration Decrements, Journal of Sound and Vibration, 282, pp.1208-1220. https://doi.org/10.1016/j.jsv.2004.04.034
  11. Pall, A.S., Marsh, C., Fazio, P. (1980) Friction Joints for Seismic Control of Large Panel Structures, Journal of Prestressed Concrete Institution, 25, pp.38-61.
  12. Rao, S.S. (1995) Mechanical Vibrations, Addison- Wesley, U.S.A., p.912.
  13. Shaw, S.W. (1986) On the Dynamic Response of a System with Dry Friction, Journal of Sound and Vibration, 108, pp.305-325. https://doi.org/10.1016/S0022-460X(86)80058-X
  14. Spencer, Jr.B.F., Dyke, S.J., Sain, M.K., Carlson, J.D. (1997) Phenomenological Model of a Magnetorheological Damper, Journal of Engineering Mechanics, ASCE, 123(3), pp.230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  15. Stanway, R., Sproston, J.L., Stevens, N.G. (1987) Non-linear Modeling of an Electro-rheological Vibration Damper, Journal of Electrostatics, 20, pp.167-184. https://doi.org/10.1016/0304-3886(87)90056-8
  16. Wereley, N.M., Pang, L., Kamath, G.M. (1998) Idealized Hysteresis Modeling of Electrotheological and Magnetorheological Dampers, Journal of Intelligent Material, Systems and Structures, 9(8), pp.642-649. https://doi.org/10.1177/1045389X9800900810
  17. Wu, Z., Liu, H., Liu, L., Yuan, D. (2007) Identification of Nonlinear Viscous Damping and Coulomb Friction from the Free Response Data, Journal of Sound and Vibration, 304, pp.407-414. https://doi.org/10.1016/j.jsv.2007.02.026
  18. Yang, G. (2001) Large-scale Magnetorheological Fluid Damper for Vibration Mitigation: Modeling, Testing and Control, Ph.D dissertation, University of Notre Dame, Indiana.