DOI QR코드

DOI QR Code

A computer simulation of ion exchange membrane electrodialysis for concentration of seawater

  • Received : 2009.03.17
  • Accepted : 2009.07.07
  • Published : 2010.01.25

Abstract

The performance of an electrodialyzer for concentrating seawater is predicted by means of a computer simulation, which includes the following five steps; Step 1 mass transport; Step 2 current density distribution; Step 3 cell voltage; Step 4 NaCl concentration in a concentrated solution and energy consumption; Step 5 limiting current density. The program is developed on the basis of the following assumption; (1) Solution leakage and electric current leakage in an electrodialyzer are negligible. (2) Direct current electric resistance of a membrane includes the electric resistance of a boundary layer formed on the desalting surface of the membrane due to concentration polarization. (3) Frequency distribution of solution velocity ratio in desalting cells is equated by the normal distribution. (4) Current density i at x distant from the inlets of desalting cells is approximated by the quadratic equation. (5) Voltage difference between the electrodes at the entrance of desalting cells is equal to the value at the exits. (6) Limiting current density of an electrodialyzer is defined as average current density applied to an electrodialyzer when current density reaches the limit of an ion exchange membrane at the outlet of a desalting cell in which linear velocity and electrolyte concentration are the least. (7) Concentrated solutions are extracted from concentrating cells to the outside of the process. The validity of the computer simulation model is demonstrated by comparing the computed results with the performance of electrodialyzers operating in salt-manufacturing plants. The model makes it possible to discuss optimum specifications and operating conditions of a practical-scale electrodialyzer.

Keywords

References

  1. Azechi, S. (1980), "Electrodialyzer", Bull. Soc. Sea Water Sci., Jpn., 34, 77-83.
  2. Belfolt, G.. and Guter, G.A. (1972), "An experimental study of electrodialysis hydrodynamics", Desalination, 10, 221-262. https://doi.org/10.1016/S0011-9164(00)82001-9
  3. Berfort, G. and Gutter, G.A. (1972), "An experimental study of electrodialysis hydrodynamics", Desalination, 10, 221-262. https://doi.org/10.1016/S0011-9164(00)82001-9
  4. Berragan, V.M. and Ruiz-Bauza, C. (1998), "Current-voltage curves for ion-exchange membranes: A method for determining the limiting current density", J. Colloid Inter. Sci., 205, 365-373. https://doi.org/10.1006/jcis.1998.5649
  5. Feron, P. and Slot, G.S. (1991), "The influence of separators on hydrodynamics and mass transfer in narrow cells: Flow visualization", Desalination, 84, 137-152. https://doi.org/10.1016/0011-9164(91)85125-E
  6. Fidaleo, M. and Moresi, M. (2005), "Optimal strategy to model the electrodialytic recovery of a strong electrolyte", J. Membr. Sci., 260, 90-111. https://doi.org/10.1016/j.memsci.2005.01.048
  7. Fujita, T. (2009), "Current challenges of salt production technology", Bull. Soc. Sea Water Sci., Jpn., 63, 15-20.
  8. Grossman, G. and Sonin, A.A. (1973), "Membrane fouling in electrodialysis: A model and experiments", Desalination, 12, 107-125. https://doi.org/10.1016/S0011-9164(00)80178-2
  9. Hani, H., Nishihara, H. and Oda, Y. (1961), Anion-exchange membrane having permselectivity between anions, JP Patent, S36-15258.
  10. Hanzawa, N., Azechi, S., Fujimoto, Y. and Nagatsuka, S. (1965), Studies on electrodialytic equipment with ion exchange membrane X, Comparison of spacer used for electrodialytic equipment, Scientific Papers of The Odawara Salt Experiment Station, 10, pp. 16-25.
  11. Helfferich, F. (1962), Ion-Exchange, McGraw-Hill Book., New York, pp 397-408.
  12. Huang, T.C. and Yu, I.Y. (1988), "Correlation of ionic transfer rate in electrodialysis under limiting current density conditions", J. Membr. Sci., 35, 193-206. https://doi.org/10.1016/S0376-7388(00)82443-6
  13. Kitamoto, A. and Takashima, Y. (1968), "Studies on electroosmosis, maximum attainable concentration, limiting current density and energy efficiency in electrodialysis using ion-exchange membranes", J. Chem. Eng. Jpn., 32, 74-82.
  14. Kuroda, O. (1993), "Study for improvement of efficiency in electrodialyzer", Bull. Soc. Sea Water Sci., Jpn., 47, 248-258.
  15. Lee, H.J., Strathmann, H. and Moon, S.H. (2006), "Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity", Desalination, 190, 43-50. https://doi.org/10.1016/j.desal.2005.08.004
  16. Lee, H.J., Sarfert, F., Strathmann, H. and Moon, S.H. (2002), "Designing of an electrodialysis desalination plant", Desalination, 142, 267-286. https://doi.org/10.1016/S0011-9164(02)00208-4
  17. Mandersloot, W.G..B. and Hicks, R.E. (1966), "Leakage current in electrodialytic desalting and brine production", Desalination, 1, 178-193. https://doi.org/10.1016/S0011-9164(00)84017-5
  18. Mihara, K., Misumi, T., Yamauchi, H. and Ishida, Y. (1970), Anion-exchange membrane having excellent specific permselectivity between anions, JP Patent, S45-19980, S45-30693.
  19. Mihara, K., Misumi, T., Yamauchi, H. and Ishida, Y. (1972), Production of a cation-exchange membrane having excellent specific permselectivity between cations, JP Patent, S47-3081.
  20. Mineki, Y., Gunzima, T. and Arai, S. (1972), Production of an ion exchange membrane, JP Patent, S47-40868.
  21. Misumi, T., Kawashima, Y., Takeda, K. and Kamaya, M. (1974), Production of an ion exchange membrane structure and an apparatus, JP Patent, S49-34476.
  22. Miyoshi, H., Fukumoto, T. and Kataoka, T. (1982), "A consideration on flowdistribution in an ion exchange compartment with spacer", Desalination, 42, 47-55. https://doi.org/10.1016/S0011-9164(00)88740-8
  23. Miyoshi, H., Fukumoto, T. and Kataoka, T.A. (1988), "Method for estimating the limiting current density in electrodialysis", Sep. Sci. Technol., 23, 585-600. https://doi.org/10.1080/01496398808057654
  24. Mizutani, Y., Yamane, R. and Kimura, K. (1964), Production of ion exchange membrane, JP Patent, S39-27861.
  25. Mizutani, Y., Yamane, R., Sata, T. and Izuo, T. (1971), Permselectivity treatment of a cation-exchange membrane, JP Patent, S5642083.
  26. Moon, P., Sandi, G., Stevens, D. and Kizilel, R. (2004), "Computational medeling of ionic transport in continuous and batch electrodialysis", Sep. Sci. Technol., 39, 2531-2555. https://doi.org/10.1081/SS-200026714
  27. Nagatsuka, S., Kagiwada, K., Soga, K. and Sugita, S. (1987), "The influence of the sea water quality on the adhered matter of membrane", Bull. Soc. Sea Water Sci., Jpn., 40, 356-362.
  28. Oda, Y. and Yawataya, T. (1968), "Neutrality-disturbance phenomenon of membrane-solution system", Desalination, 5, 129-138. https://doi.org/10.1016/S0011-9164(00)80208-8
  29. Ohwada, K., Shimizu, U. and Taga, N. (1981), "Microorganism and organic matter deposited on the ion exchange membrane", Bull. Sea Water Sci., Jpn., 34, 367-372.
  30. Pnueli, D. and Grossman, G.A. (1969), "Mathematical model for the flow in an electrodialysics cell", Desalination, 6, 303-308. https://doi.org/10.1016/S0011-9164(00)80220-9
  31. Sadrzadeh, M., Kaviani, A. and Mohammadi, T. (2007), "Mathematical modeling of desalination by electrodialysis", Desalination, 206, 538-546. https://doi.org/10.1016/j.desal.2006.04.062
  32. Salt Industry Center (1998), Jpn., Salt Production Technical Report.
  33. Shaffer, L.H. and Mintz, M.S. (1966), Electrodialysis, In K.S. Spiegler (Ed.), Principles of Desalination, Academic Press, New York, London, pp. 200-289.
  34. Shaposhnik, V.A., Grigorchuk, O.V., Korzhov, E.N., Vasil'eva, V.I. and Klimov, Y.V. (1998), "The effect of ionconducting spacers on mass transfer - numerical analysis and concentration field visualization by means of laser interferometry", J. Membrane Sci., 139, 85-96. https://doi.org/10.1016/S0376-7388(97)00247-0
  35. Shaposhnik, V.A., Kuzminykh, V.A., Drigorchuk, O.V. and Vasil'eva, V.I. (1997), "Analytical model of laminar flow electrodialysis with ion-exchange membranes", J. Membrane Sci., 133, 27-37. https://doi.org/10.1016/S0376-7388(97)00063-X
  36. Solan, A., Winograd, Y. and Katz, U. (1971), "An analytical model for mass transfer in an electrodialysis cell with spacer of finite mesh", Desalination, 9, 89-95. https://doi.org/10.1016/S0011-9164(00)80130-7
  37. Sonin, A.A. and Probstein, R.F. (1968), "A hydrodynamic theory of desalination by electrodialysis", Desalination, 5, 293-329. https://doi.org/10.1016/S0011-9164(00)80105-8
  38. Tanaka, Y. (2000), "Current density distribution and limiting current density in ion-exchange membrane electrodialysis", J. Membrane Sci., 73, 179-190.
  39. Tanaka, Y. (2003), "Mass transport and energy consumption in ion-exchange membrane electrodialysis of seawater", J. Membane Sci., 215, 265-279. https://doi.org/10.1016/S0376-7388(03)00020-6
  40. Tanaka, Y. (2004), "Pressure distribution, hydrodynamics, mass transport and solution leakage in an ion exchange membrane electrodialyzer", J. Membrane Sci., 234, 23-39. https://doi.org/10.1016/j.memsci.2004.01.008
  41. Tanaka, Y. (2005), "Limiting current density of an ion-exchangemembrane and of an electrodialyzer", J. Membrane Sci., 266, 6-17. https://doi.org/10.1016/j.memsci.2005.05.005
  42. Tanaka, Y. (2005), "Overall mass transport and solution leakage in an ion exchange membrane electrodialyzer", J. Membrane Sci., 235, 15-24.
  43. Tanaka, Y. (2006), "Irreversible thermodynamics and overall mass transport in ion exchange membrane electrodialysis", J. Membrane Sci., 281, 517-531. https://doi.org/10.1016/j.memsci.2006.04.022
  44. Tanaka, Y. (2007), "Acceleration of water dissociation generated in an ion exchange membrane", J. Membrane Sci., 303, 234-243. https://doi.org/10.1016/j.memsci.2007.07.020
  45. Tanaka, Y. (2007), Ion Exchange Membranes: Fundamentals and Applications, Membrane Technology Series 12, Elsevier, Amsterdam.
  46. Tanaka, Y.A., "Computer simulation of continuous ion exchange membrane electrodialysis for desalination of saline water", Desalination, The article to be published.
  47. Tanaka, Y., Ehara, R., Itoi, S. and Goto, T. (2003), "Ion-exchange membrane electrodialytic salt production using brine discharged from a reverse osmosis seawater desalination plant", J. Membrane Sci., 222, 71-86. https://doi.org/10.1016/S0376-7388(03)00217-5
  48. Tanaka, Y., Matsuda, S., Sato, Y. and Seno, M. (1982), "Concentration polarization and dissociation of water in ion exchange membrane electrodialysis III. The effects of electrolytes on the dissociation of water", J. Electrochem. Soc., Jpn, 50, 667-672.
  49. Tomita, A. Electrodialyzer, In. N. Ogata (Ed.), Engineering in Salt Manufacturing, vol. 2, Electrodialysis, Japan Salt Industry Foundation, Tokyo, pp. 85-101.
  50. Tsunoda, S. (1993), "Present status and latest trends of deep bed filtration", Bull. Soc. Sea Water Sci., Jpn., 48, 27-37.
  51. Tsunoda, Y. (1965), "Electrodialysis for producing brine concentrates from sea water", Proc. of the First Int. Symp. on Water Desalination, 99, 325-339, Washington D.C.
  52. Ueno, K., Ozawa, T., Ooki, H., Ishida, T. and Sudo, T. (1980), Washing method of ion-exchange membranes, JP Patent, S55-33662.
  53. Urabe, S. and Doi, K. (1978), "Electrodialyzer", Ind. Water, 239, 24-28.
  54. Urabe, S. and Doi, K. (1987), Washing method of ion-exchange membranes, JP Patent, S62-52624.
  55. Valerdi-Perez, R. and Ibaez-Mengual, J. (2001), "Current-voltage curves for an electridialysis reversal pilot plant: Determination of limiting currents", Desalination, 141, 23-37. https://doi.org/10.1016/S0011-9164(01)00386-1
  56. Watanabe, T., Yamamoto, H., Akiyama, M. and Yugi, N. (1972), "Prevention of calcium-carbonate deposition by acid-adding method", Bull. Soc. Sea Water Sci., Jpn., 26, 83-90.
  57. Wilson, J.R. (1960), Demineralization by Electrodialysis, Buther-worth Scientific Publication, London, p. 256.
  58. Yamashita, I. (1976), Removing method of fouling substances in an electrodialyzer, JP Patent, S51-131477.
  59. Zabolotsky, V.I., Shel'deshov, N.V. and Gnusin, N.P. (1988), "Dissociation of water molecules in systems with ion-exchange membranes", Rus. Chem. Rev., 57, 801-808. https://doi.org/10.1070/RC1988v057n08ABEH003389

Cited by

  1. Concentration distribution along the electrodialyzer vol.341, 2014, https://doi.org/10.1016/j.desal.2014.02.040
  2. Simulation of an ion exchange membrane electrodialysis process for continuous saline water desalination vol.22, pp.1-3, 2010, https://doi.org/10.5004/dwt.2010.1858
  3. Development of a computer simulation program of batch ion-exchange membrane electrodialysis for saline water desalination vol.320, 2013, https://doi.org/10.1016/j.desal.2013.04.022
  4. Ion-Exchange Membrane Electrodialysis of Saline Water and Its Numerical Analysis vol.50, pp.18, 2011, https://doi.org/10.1021/ie2005498
  5. Ion-exchange membrane electrodialysis program and its application to multi-stage continuous saline water desalination vol.301, 2012, https://doi.org/10.1016/j.desal.2012.06.007
  6. Concentration of NaCl from seawater reverse osmosis brines for the chlor-alkali industry by electrodialysis vol.342, 2014, https://doi.org/10.1016/j.desal.2013.12.021
  7. Development of a computer simulation program of feed-and-bleed ion-exchange membrane electrodialysis for saline water desalination vol.342, 2014, https://doi.org/10.1016/j.desal.2013.08.016
  8. Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes vol.510, 2016, https://doi.org/10.1016/j.memsci.2016.03.012
  9. Batch ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing process. Experiment and simulation vol.156, 2015, https://doi.org/10.1016/j.seppur.2015.10.013
  10. Brackish Water Desalination by Electrodialysis Cell Technique vol.8, pp.6, 2014, https://doi.org/10.3923/rjes.2014.342.349
  11. A computer simulation of continuous ion exchange membrane electrodialysis for desalination of saline water vol.249, pp.2, 2010, https://doi.org/10.1016/j.desal.2009.04.011
  12. A computer simulation of batch ion exchange membrane electrodialysis for desalination of saline water vol.249, pp.3, 2010, https://doi.org/10.1016/j.desal.2009.06.055
  13. Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl- ions and SO42- ions vol.3, pp.1, 2010, https://doi.org/10.12989/mwt.2012.3.1.063
  14. fMWNTs/GO/MnO2 nanocomposites as additives in a membrane for the removal of crystal violet vol.12, pp.5, 2021, https://doi.org/10.12989/mwt.2021.12.5.205