DOI QR코드

DOI QR Code

Simulations of Electrical Characteristics of Multi-layer Organic Light Emitting Diode Devices with doped Emitting Layer

도핑된 발광층을 갖는 다층 유기발광다이오드 소자의 전기적 특성 해석

  • Oh, Tae-Sik (Department of Information Display, Sun Moon University) ;
  • Lee, Young-Gu (R&D Promotion Team, Cheorwon Plasma Research Institute)
  • 오태식 (선문대학교 공과대학 정보디스플레이학과) ;
  • 이영구 (철원플라즈마 산업기술연구원 연구개발 진흥팀)
  • Received : 2009.12.20
  • Accepted : 2010.03.18
  • Published : 2010.03.31

Abstract

We have performed numerical simulations of the electrical characteristics for multi-layer organic light emitting diode devices with doped emitting layer using a commercial simulation program. In this paper, the basic structure consists of the ITO/NPB/$Alq_3$:C545T(%)/$Alq_3$/LiF/Al, four devices that were composed of $Alq_3$ as the host and C545T as the green dopant with different concentration, were studied. As the result, the variations of the doping concentration rate of C545T have a effect on the voltage-current density characteristics. The voltage-current characteristics are quite consistent with the results which were experimentally determined in a previous reference paper. In addition, the voltage-luminance characteristics were greatly improved, and the luminous efficiency was improved three times. In order to analyze these driving mechanism, we have investigated the distribution of electric field, charge density of the carriers, and recombination rates in the inner of the OLED devices.

발광층에 도펀트가 도핑된 다층 유기발광다이오드 소자 구조에서의 발광 메카니즘을 검증하기 위해 전기적인 특성요인들을 수치해석 하였다. 본 논문에 적용한 유기발광다이오드 소자는 ITO/NPB/$Alq_3$:C545T(%)/$Alq_3$/LiF/Al으로 이루어져 있으며 도펀트인 C545T의 도핑 농도를 변화시킨 4종류의 소자 구조에 대해 특성 변화를 검토하였다. 그 결과 도펀트의 도핑 농도 변화에 따라서 전압-전류 특성이 변화되어짐을 확인하였고, 이는 참고 문헌에 제시되어 있는 전압-전류밀도 실험 데이터와 매우 잘 일치되었다. 또한 도펀트를 도핑시킨 소자 구조들에서 전압-휘도 특성이 대폭 향상되어 발광효율이 3배정도 향상되었다. 이와 같은 guest-host system이 적용된 유기발광다이오드 소자의 동작 메카니즘을 분석하기 위하여 소자 내부에서의 전계분포, 전하분포, 재결합율 등의 전기적인 항목들에 대한 특성의 변화를 관찰하였다.

Keywords

References

  1. M. Pope and C. E. Swenberg, "Single positive or negative carriers in organic crystals," Electronic Processes in Organic Crystals and Polymers. New York: Oxford Univ. Press, 1982 & 1999.
  2. Y. Cao, I. D. Parker, G. Yu, C. Zhang, and A. J. Heeger, "Improved quantum efficiency for electroluminescence in semiconducting polymers," Nature, vol. 397, pp. 414, 1999. https://doi.org/10.1038/17087
  3. Y. Ohmori, A. Fuji, M. Uchida, C. Morishima, and K. Yoshino, "Observation of spectral narrowing and emission energy shift in organic electroluminescent diode utilizing 8-hydroxy -quinoline aluminum /aromatic diamine multi -layer structure," Appl. Phys. Lett., vol. 63, pp. 1871, 1993. https://doi.org/10.1063/1.110632
  4. S. A. Van Slyke, C. H. Chen, and C. W. Wang, "Organic electroluminescent devices with improved stability," Appl. Phys. Lett., vol. 69, pp. 2160, 1996. https://doi.org/10.1063/1.117151
  5. Peter K. H. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, Sam F. Y. Li, T. M. Brown, F. Cacialli, and R. H. Friend, "Molecular-scale interface engineering for polymer light-emitting diodes," Nature, Vol. 404, No. 6777, pp. 481 2000. https://doi.org/10.1038/35006610
  6. C. W. Tang, et al., "Electroluminescence of doped organic thin films,"J. Appl. Phys., vol. 65 issue. 9, pp. 3610, 1989. https://doi.org/10.1063/1.343409
  7. T. Mori, K. Obata, and T. Mizutani, "Electroluminescence of organic light emitting diodes with alternately deposited dye-doped aluminium quinoline and diamine derivative," J. Phys. D.Appl, Phys., vol.32(11), pp. 1198, 1999. https://doi.org/10.1088/0022-3727/32/11/303
  8. F. Guo, D. Ma, L. Wang, X. Jing and F. Wang, "High efficiency white organic light-emitting devices by effectively controlling exciton recombination region," Semicond. Sci. Technol. vol. 20 pp. 310, 2005. https://doi.org/10.1088/0268-1242/20/3/010
  9. C. C. Lee, Y.-D. Jong, P.-T. Huang, Y. C. Chen, P.-J. Hu and Y. Chang, "Numerical Simulation of Electrical Model for Organic Light-Emitting Devices with Fluorescent Dopant in the Emitting Layer," Japanese J. Appl. Phys., Vol. 44, No. 11, pp. 8147. 2005. https://doi.org/10.1143/JJAP.44.8147
  10. Y. Luo, H. Aziz, Z. D. Popovic, and G. Xu, "Electric-field-induced fluorescence quenching in dye-doped tris(8-hydroxyquinoline)aluminum layers," Appl. Phys. Lett., vol. 89, pp. 103505, 2006. https://doi.org/10.1063/1.2337269
  11. Z. Chen and D. Ma, "Effect of doped dye on the charge-carrier transport and electro- luminescent performance in molecularly doped polymer light-emitting diodes," Journal of Luminescence, vol.122-123, pp. 633, 2007. https://doi.org/10.1016/j.jlumin.2006.01.245
  12. B. J. Chen, W. Y. Lai, Z. Q. Gao, C. S. Lee, W. A. Gambling and S. T. Lee, "Electron drift mobility and electroluminescent efficiency of tris (8-hydroxyquinolinolato)aluminum," Appl. Phys. Lett., vol. 75, pp. 4010, 1999. https://doi.org/10.1063/1.125521
  13. C. B. Lee, A. Uddin, X. Hu, and T. G. Andersson, "Study of Alq3 thermal evaporation rate effects on the OLED," Materials science & engineering B, vol.112, pp. 14, 2004. https://doi.org/10.1016/j.mseb.2004.05.009
  14. W. D. Gill, "Drift mobilities in amorphous charge transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole," J. Appl. Phys., vol. 43(12), 1972.
  15. R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B. Sinclair, V. S. Valencia and P. A. Cahill, "Electron and hole mobility in tris(8-hydroxyquinolinolato-N1,O8)aluminum," Appl. Phys. Lett., vol. 66(26), pp. 3618, 1995. https://doi.org/10.1063/1.113806
  16. B. Chen and S. Liu, "Measurement of electron/hole mobility in organic/polymeric thin films using modified time-of-flight apparatus," Synthetic Matals, vol. 91, pp. 169, 1997 https://doi.org/10.1016/S0379-6779(97)04005-8
  17. D. J. Pinner, R. H. Friend and N. Tessler, "Transient electroluminescence of polymer light emitting diodes using electrical pulses," J. Appl. Phys., vol. 86(9), pp. 5116, 1999. https://doi.org/10.1063/1.371488
  18. P. W. M. Blom and M. C. J. M. Vissenberg, "Charge transport in poly(p-phenylene vinylene) light emitting diode," Materials Science and Engineering, vol. 27(3-4), pp. 53, 2000. https://doi.org/10.1016/S0927-796X(00)00009-7
  19. G. Pfister, "Hopping transport in a molecularly doped organic polymer," Phys. Rev. B, vol. 16, Issue 8, pp. 3676, 1977. https://doi.org/10.1103/PhysRevB.16.3676
  20. R. L. Martin, J. D. Kress, I. H. Campbell and D. L. Smith, "Molecular and solid-state properties of tris(8-hydroxyquinolate)aluminum," Phys. Rev. B, vol.61(23), pp. 15804, 2000. https://doi.org/10.1103/PhysRevB.61.15804
  21. S. Naka, H. Okada, H. Onnagawa, Y. Yamaguchi and T. Tsutsui, "Carrier transport properties of organic materials for EL device operation," Synthetic Metals, vol. 111-112 pp. 331, 2000. https://doi.org/10.1016/S0379-6779(99)00358-6
  22. G. G. Malliaras, Y. Shen, D. H. Dunlop, H. Murata and Z. H. Kafafi, "Nondispersive electron transport in Alq3," Appl. Phys. Lett., vol. 79(16), pp. 2582, 2001. https://doi.org/10.1063/1.1410343
  23. S. C. Tse, H. H. Fong, and S. K. So, "Electron transit time and reliable mobility measurements from thick film hydroxyquinoline-based organic lightemitting diode," J. Appl. Phys., vol. 94(3), pp. 2033, 2003. https://doi.org/10.1063/1.1589175
  24. C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, "Transient behavior of organic thin film electroluminescence," Appl. Phys. Lett., vol. 60(10), pp. 1220, 1992. https://doi.org/10.1063/1.107411
  25. J. Kalinowski, N. Camaioni, P. D. Marco, V. Fattori, and A. Martelli, "Kinetics of charge carrier recombination in organic light-emitting diodes," Appl. Phys. Lett., vol. 72(5), pp. 513, 1998. https://doi.org/10.1063/1.120805
  26. S. Barth, P. Muller, H. Riel, P. F. Seidler, W. Rie β, H. Vestweber and H. Bassler, "Electron mobility in tris(8-hydroxy-quinoline) aluminum thin films determined via transient electro- luminescence from single and multilayer organic light emitting diodes," J. Appl. Phys., vol. 89 (7), pp. 3711, 2001. https://doi.org/10.1063/1.1330766
  27. D. Ma, G. Wang, Y. Hu, Y. Zhang, L. Wang, X. Jing, F. Wang, C. S. Lee, and S. T. Lee, "A dinuclear aluminum 8-hydroxyquinoline complex with high electron mobility for organic light emitting diodes," Appl. Phys. Lett., vol. 82(8), pp. 1296, 2003. https://doi.org/10.1063/1.1557332
  28. J. Chen and D. Ma, "Effect of dye concentration on the charge carrier transport in molecularly doped organic light emitting diodes," J. Appl. Phys., vol.95(10), pp. 5778, 2004. https://doi.org/10.1063/1.1703834