DOI QR코드

DOI QR Code

Kinetic Investigation of CO2 Reforming of CH4 over Ni Catalyst Deposited on Silicon Wafer Using Photoacoustic Spectroscopy

  • Received : 2010.01.20
  • Accepted : 2010.03.12
  • Published : 2010.05.20

Abstract

The $CO_2-CH_4$ reaction catalyzed by Ni/silicon wafers was kinetically studied by using a photoacoustic technique. The catalytic reaction was performed at various partial pressures of $CO_2$ and $CH_4$ (50 Torr total pressure of $CO_2/CH_4/N_2$) in the temperature range of 500 - $650^{\circ}C$ in a static reactor system. The photoacoustic signal that varied with the $CO_2$ concentration during the catalytic reaction was recorded as a function of time. Under the reaction conditions, the $CO_2$ photoacoustic measurements showed the as-prepared Ni thin film sample to be inactive for the reaction, while the $CO_2/CH_4$ reactions carried out in the presence of the sample pre-treated in $H_2$ at $600^{\circ}C$ were associated with significant time-dependent changes in the $CO_2$ photoacoustic signal. The rate of $CO_2$ disappearance was measured from the $CO_2$ photoacoustic signal data in the early reaction period of 50 - 150 sec to obtain precise kinetic data. The apparent activation energy for $CO_2$ consumption was determined to be 6.9 kcal/mol from the $CO_2$ disappearance rates. The partial reaction orders, determined from the $CO_2$ disappearance rates measured at various $PCO{_2}'S$ and $PCH{_4}'S$ at $600^{\circ}C$, were determined to be 0.33 for $CH_4$ and 0.63 for $CO_2$, respectively. Kinetic data obtained in these measurements were compared with previous works and were discussed to construct a catalytic reaction mechanism for the $CO_2-CH_4$ reaction over Ni/silicon wafer at low pressures.

Keywords

References

  1. Bradford, M. C. J.; Vannice, M. A. Catal. Rev. Sci. Eng. 1999, 41, 1. https://doi.org/10.1081/CR-100101948
  2. Choi, J. G.; Diebold, G. J. Anal. Chem. 1987, 59, 519. https://doi.org/10.1021/ac00130a031
  3. Kim, J. W.; Ha, J. A.; Jung, H.; Ahn, B. I.; Lee, S. H.; Choi, J. G. Phys. Chem. Chem. Phys. 2007, 9, 5828. https://doi.org/10.1039/b709102h
  4. Kim, S. J.; Byun, I. S.; Han, H. Y.; Ju, H. L.; Lee, S. H.; Choi, J. G. Appl. Catal. A: Gen. 2002, 234, 35. https://doi.org/10.1016/S0926-860X(02)00200-4
  5. Byun, I. S.; Choi, O. L.; Choi, J. G.; Lee, S. H. Bull. Korean Chem. Soc. 2002, 23, 1513. https://doi.org/10.5012/bkcs.2002.23.11.1513
  6. Koh, H. W.; Lee, S. H.; Choi, J. G. Bull. Korean Chem. Soc. 2004, 25, 1253. https://doi.org/10.5012/bkcs.2004.25.8.1253
  7. Jung, H.; Kim, J. W.; Cho, Y. G.; Jung, J. S.; Lee, S. H.; Choi, J. G. Appl. Catal. A: Gen. 2009, 368, 50. https://doi.org/10.1016/j.apcata.2009.08.010
  8. Bradford, M. C. J.; Vannice, M. A. Appl. Catal. A: Gen. 1996, 142, 97. https://doi.org/10.1016/0926-860X(96)00066-X
  9. Takano, A.; Tagawa, T.; Goto, S. J. Chem. Eng. Jpn. 1994, 27, 727. https://doi.org/10.1252/jcej.27.727
  10. Wang, S.; Lu, G. Q.; Millar, G. J. Energy Fuels 1996, 10, 896. https://doi.org/10.1021/ef950227t
  11. Erdohelyi, A.; Csrenyi, J.; Papp, E.; Solymosi, F. Appl. Catal. A: Gen. 1994, 108, 205. https://doi.org/10.1016/0926-860X(94)85071-2
  12. Solymosi, F. J. Mol. Catal. 1991, 65, 337. https://doi.org/10.1016/0304-5102(91)85070-I
  13. Beebe, T. P.; Goodman, D. W.; Kay, B. D.; Yates, J. T. J. Chem. Phys. 1987, 87, 2305. https://doi.org/10.1063/1.453162
  14. Munera, J. F.; Irusta, S.; Cornaglia, L. M.; Lombardo, E. A.; Cesar, D. V.; Schmal, M. J. Catal. 2007, 245, 25. https://doi.org/10.1016/j.jcat.2006.09.008
  15. Kroll, V. C. H.; Swaan, H. M.; Lacombe, S.; Mirodatos, C. J. Catal. 1997, 164, 387. https://doi.org/10.1006/jcat.1996.0395
  16. Bradford, M. C. J.; Vannice, M. A. J. Catal. 1998, 173, 157. https://doi.org/10.1006/jcat.1997.1910
  17. Chang, J. S.; Park, S. E.; Chon, H. Appl. Catal. A: Gen. 1996, 145, 111. https://doi.org/10.1016/0926-860X(96)00150-0
  18. Wang, H. Y.; Au, C. T. Catal. Lett. 1996, 38, 77. https://doi.org/10.1007/BF00806903

Cited by

  1. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane vol.8, pp.21, 2015, https://doi.org/10.1002/cssc.201500390