DOI QR코드

DOI QR Code

태안반도 인근해역 우점 요각류의 계절별 분포와 섭식

Seasonal Distribution of Major Copepods and Their Feeding in the Coastal Area off Taean Peninsula

  • 송혜영 (충남대학교 해양환경과학과) ;
  • 이두별 (한국해양연구원 부설 극지연구소, 극지기후연구부) ;
  • 박철 (충남대학교 해양환경과학과)
  • Song, Hye-Young (Department of Oceanography and Ocean Environmental Sciences, Chungnam National University) ;
  • Lee, Doo-Byoul (Division of Polar Climate Research, Korea Polar Research Institute) ;
  • Park, Chul (Department of Oceanography and Ocean Environmental Sciences, Chungnam National University)
  • 투고 : 2010.06.28
  • 심사 : 2010.09.28
  • 발행 : 2010.11.30

초록

태안반도 인근 해역의 우점 요각류 세 종의 계절별 분포를 알아보고 계절별 섭식률을 측정하여 이들이 식물플랑크톤 현존량에 미치는 섭식압을 파악하였다. 우점 요각류인 Acartia hongi, Calanus sinicus, Paracalanus parvus s. 1.는 전체 중형동물플랑크톤 개체수의 약 50%를 차지하였고 전체 요각류의 약 70%를 차지하였다. A. hongi는 겨울철, 봄철에 우점하였고, C. sinicus는 봄철에 가장 우점하였으며, P. parvus s. 1.는 여름철과 가을철에 우점하였다. 이들 세 요각류의 섭식률은 봄철에 가장 높았고, 섭식률이 높은 시기에 요각류 알(egg)과 유생(nauplius)의 생물량이 다른 계절에 비해 약 10배 이상 많았다. 또한, 섭식률이 높은 시기에 유생 단계의 생물량도 높게 나타나 이들의 섭식률은 재생산을 위해 증가한 것으로 여겨졌다. 이 우점 요각류 세 종이 식물플랑크톤 현존량에 미치는 섭식압은 약 5% (0.7~40.5% 범위) 정도였으며, 봄철에 가장 높았다.

Seasonal fluctuations in abundances and ingestion rates of the three major copepods, Acartia hongi, Calanus sinicus and Paracalanus parvus s. l., around the Taean Peninsula were studied along with the estimation of the grazing impacts by them on phytoplankton standing stocks. These three copepods occupied about 50% of total mesozooplankton abundances and about 70% of total copepod abundances. A. hongi dominated in winter and spring while C. sinicus showed only one peak in spring. P parvus s. l. occurred dominantly in summer and fall. The ingestion rates of these three copepods were the highest in spring, when their abundances of eggs and nauplii were more than 10 times greater. Abundances of copepodites of these copepods were also very abundant at this time of high ingestion rates. These increased ingestion rates seemed to be related with reproduction. The grazing impacts by these three copepods were about 5% of the available chlorophyll a in the water column (with the range of 0.7 to 40.5%). The highest value was found in spring.

키워드

과제정보

연구 과제 주관 기관 : 한국해양과학기술진흥원

참고문헌

  1. 강형구, 강용주, 1998. 실험실에서 요각류 Acartia steueri의 성장과 발생. 한국수산학회지, 31: 842-851.
  2. 박 철, 1989. 연얀역 동물 플랑크톤 시료의 변이: 반복 채집 및 시간별 채집의 필요성. 한국해양학회지, 24: 165-171.
  3. 박 철, 이평강, 1995. 아산만 요각류 Calanus sinicus의 알생산. 한국수산학회지, 28: 105-113.
  4. 박 철, 이두별, 이창래, 양성렬, 정병관, 2008. 아산만 해역 동-춘계 대증식기의 플랑크톤 변화. 한국해양학회지, 13: 308-319.
  5. 신경순, 1997. 황.동중국해에서 calanoid 요각류의 현장 먹이 섭이율 및 식물플랑크톤에 대한 포식압. 인하대학교 박사학위 논문. pp. 180.
  6. 신경순, 최중기, 1992. 해양부유성 요각류인 Calanus sinicus와 Acartia clausi (A. omorii)의 포식행동. 한국해양학회지, 27: 11-18.
  7. 심재형, 윤구현, 1990. 천수만 동물플랑크톤의 계절변화와 생산량. 한국해양학회지, 25: 229-239.
  8. 윤석현, 최중기, 2003. 경기만 동물플랑크톤 군집의 시.공간적 분포. 한국해양학회지, 8: 243-250.
  9. 이두별, 2010. 아산만 해역 중형동물플랑크톤의 분포 특성과 주요 우점 요각류의 섭식. 충남대학교 박사학위 논문. pp. 211.
  10. 이창래, 박 철, 양성렬, 신용식, 2006. 아산만 해역 중형동물플랑크톤의 시공간적 변동. 한국해양학회지, 11: 1-10.
  11. 황학진, 최중기, 1993. 황해 중동부 해역 동물플랑크톤의 계절적 분포 특성. 한국해양학회지, 28: 24-34.
  12. Baars, M.A. and Fransz, H.G., 1984. Grazing pressure of copepods on the phytoplankton stock of the central North Sea. Neth. J. Sea. Res., 18: 120-142. https://doi.org/10.1016/0077-7579(84)90028-0
  13. Bautista, B. and Harris, R.P., 1992. Copepod gut contents, ingestion rates and grazing impact on phytoplankton in relation to size structure of zooplankton and phytoplankton during a spring bloom. Mar. Ecol. Prog. Ser., 82: 41-50. https://doi.org/10.3354/meps082041
  14. Chaudron, Y., Poulet, S.A., Laabir, M., Lanora A. and Miralto. A., 1996. Is hatching success of copepod eggs diatom density-dependent? Mar. Ecol. Prog. Ser., 144: 185-193. https://doi.org/10.3354/meps144185
  15. Chen, Q.C., 1964. A study of the breeding periods, variation in sex ratio and in size of Calanus sinicus Brodsky,. Oceanol. Limnol. Sinica, 6: 272-295.
  16. Choi, J.K., 1991. The influence of the tidal front on primary productivity and distribution of phytoplankton in the mid-eastern coast of Yellow Sea. Bull. Nat. Fish. Res. Dev. Agency, 42: 143-168.
  17. Choi, K.H. and Park, C., 1993. Seasonal fluctuation of zooplankton community in Asan Bay, Korea., J. Kor. Fish. Soc., 26: 424-437.
  18. Dagg, M., 1977. Some effects of patchy food environments on copepods. Limnol. Oceanogr., 22: 99-107. https://doi.org/10.4319/lo.1977.22.1.0099
  19. Dagg, M.J., 1993. Grazing by the copepod community does not control phytoplankton in the subarctic Pacific Ocean. Prog. Oceanogr., 32: 163-183. https://doi.org/10.1016/0079-6611(93)90012-3
  20. Dagg, M.J. and Walser, W.E. Jr, 1987. Ingestion, gut passage, and egestion by the copepod Neocalanus plumchrus in the laboratory and in the Subarctic Pacific Ocean. Limnol. Oceanogr. 32: 178-188. https://doi.org/10.4319/lo.1987.32.1.0178
  21. Dagg, M.J. and Wyman, K.D., 1983. Natural ingestion rates of the copepods Neocalanus plumchrus and N. cristatus calculated from gut contents. Mar. Ecol. Prog. Ser., 13: 37-46. https://doi.org/10.3354/meps013037
  22. Dam, H.G. and Peterson, W.T., 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. J. Exp. Mar. Biol. Ecol., 123: 1-14. https://doi.org/10.1016/0022-0981(88)90105-0
  23. Dam, H.G., Zhang, X., Butler, M. and Roman, M.R., 1995. Mesozooplankton grazing and metabolism at the equator in the central Pacific implications for carbon and nitrogen fluxes. Deep-Sea Res., 42: 735-756. https://doi.org/10.1016/0967-0645(95)00036-P
  24. Davis, R.A., 1972. Principles of Oceanography. Addisonwesly Pub. Co., 268-269.
  25. Frost, B.W., 1972. Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr., 17: 805-815. https://doi.org/10.4319/lo.1972.17.6.0805
  26. Hansen, B.W., Hygum, B.H., Brozek, M., Jensen, F. and Rey, C., 2000. Food web interaction in a Calanus finmarchicus dominated pelagic ecosystem-a mesocosm study. J. Plankton Res., 22: 569-588. https://doi.org/10.1093/plankt/22.3.569
  27. Harris, R., Wiebe, P., Lenz, J., Skjoldal, H.R. and Huntley, M., 2000. ICES zooplankton methodology manual. Elsevier Academic Press. pp. 684.
  28. Haury, L.R., Yamazaki, H. and Fey, C.L., 1992. Simultaneous measurements of small-scale physical dynamics and zooplankton distribution. J. Plankton Res., 14: 513-530. https://doi.org/10.1093/plankt/14.4.513
  29. Head, E.J.H. and Harris, L.R., 1992. Chlorophyll and carotenoid transformation and destruction by Calanus spp. grazing on diatoms. Mar. Ecol. Prog. Ser., 86: 229-238. https://doi.org/10.3354/meps086229
  30. Huang, C., Uye, S. and Onbe, T., 1993. Geographic distribution, seasonal life cycle, biomass and production of a planktonic copepod Calanus sinicus in the Inland Sea of Japan and its neighboring Pacific Ocean. J. Plankton Res., 15: 1229-1246. https://doi.org/10.1093/plankt/15.11.1229
  31. Huntley, M.E. and Lopez, M.D.G., 1992. Temperature-dependent production of marine copepods: a global synthesis. Amer. Natur., 140: 201-242. https://doi.org/10.1086/285410
  32. Kleppel, G.S., Holliday, D.V. and Pieper, R.E., 1991. Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnol. Oceanogr. 36: 172-178. https://doi.org/10.4319/lo.1991.36.1.0172
  33. Landry, M.R., 1983. The development of marine calanoid copepods with comment on the isochronal rule. Limnol. Oceanogr., 28: 614-624. https://doi.org/10.4319/lo.1983.28.4.0614
  34. Lee, C.R. and Park, C., 2002. Long-term variation of zooplankton composition and abundance in Asan Bay, Korea: is it influence of dyke construction? The Yellow Sea, 8: 9-18.
  35. Li, C., Wang, R. and Sun, S., 2003. Grazing impact of copepods on phytoplankton in the Bohai Sea. Estuar. Coast. Shelf Sci., 58: 487-498. https://doi.org/10.1016/S0272-7714(03)00129-X
  36. Lin, Y. and Li, S., 1984. A preliminary study on the life cycle of Calanus sinicus Brodsky in Xiamen Harbour. J. Xiamen Univ. (Natural Sci), 23: 111-117 (in chinese with English abstract).
  37. Mackas, D.L. and Bohrer, R., 1976. Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J. Exp. Mar. Biol. Ecol., 25: 77-85. https://doi.org/10.1016/0022-0981(76)90077-0
  38. Morales, C.E. and Harris, R.P., 1990. A review of the gut fluorescence method for estimating ingestion rates of planktonic herbivores. ICES, Council Meeting, pp. 12.
  39. Nybakken, J.W., 1982. Marine biology and ecological approach, Harper and Row Publ., New York, 446p.
  40. Pagano, M., Champalbert, G., Aka, M., Kouassi, E., Arfi, R., Got, P., Troussellier, M., N'Dour, E.H., Corbin, D. and Bouvy, M., 2006. Herbivorous and microbial grazing pathways of metazooplankton in the Senegal River Estuary (West Africa). Estuar. Coast. Shelf Sci., 67: 369-381. https://doi.org/10.1016/j.ecss.2005.10.018
  41. Park, C., 1997. Seasonal distribution, eggs production and feeding by Marine copepod Calanus sinicus in Asan Bay, Korea. J. Oceanol. Soc. Korea., 32: 85-92.
  42. Park, C., Choi, K.H. and Moon, C.H., 1991. Distribution of zooplankton in Asan Bay, Korea with Comments on vertical migration. Bull. Korean Fish. Soc., 24: 472-482.
  43. Park, C. and Landry, M.R., 1993. Egg production by the subtropical copepod Undinula vulgaris. Mar. Biol., 117: 415-421.
  44. Park, C., Lee P.G. and Lee, C.R., 1998. Seasonal variation on abundance, species occurrence and species diversity of zooplankton in Asan Bay, the Yellow Sea over the last eight years. The Yellow Sea, 4: 40-48.
  45. Parsons, T.R., Takahashi, M. and Hargrave, B., 1984. Biological oceanographic processes, 3ed. Pergamon press, Oxpord, 4P.
  46. Raymont, J.E.G., 1983. Plankton and productivity in the oceans, 2nd ed. Vol. 2-zooplankton, Pergamon press, Oxford, 1-51.
  47. Rigler, F.H., 1961. The relation between concentration of food and feeding rate of Daphnia magna Straus. Canadian J. Zool., 39: 857-868. https://doi.org/10.1139/z61-080
  48. Riley, G.A., 1967. The plankton of estusries. In: Estuaries, edited by Lauff, G. R., The Horn-Shafer Company, Baltimore, 316-326 pp.
  49. Roman, M.R., 1984. Utilization of detritus by the copepod Acartia tonsa. Limnol. Oceanogr. 29: 949-959. https://doi.org/10.4319/lo.1984.29.5.0949
  50. Runge, J.A., 1984. Egg production of the marine, planktonic copepod, Calanus pacificus Brodsky: Laboratory observations. J. Exp. Mar. Biol. Ecol., 74: 53-66. https://doi.org/10.1016/0022-0981(84)90037-6
  51. Seo, J.H. and Choi, J.K., 2008. In situ grazing pressure of Acartia hongi female (Copepoda: Calanoida) on phytoplankton in Gyeonggi Bay, Korea. The Yellow Sea, 9: 32-39.
  52. Stoecker, D.K. and Egloff, D.A., 1987. Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J. Exp. Mar. Biol, Ecol. 110: 53-68. https://doi.org/10.1016/0022-0981(87)90066-9
  53. Strickler, J.R. and Costello, J.H., 1996. Calanoid copepod behavior in turbulent flows. Mar. Ecol. Prog. Ser., 139: 301-312. https://doi.org/10.3354/meps139301
  54. Strickland, J.D.H. and Parsons, T.R., 1972. A practical handbook of seawater analysis. 2nd ed. Bull. Fish. Res. Board Can., 167: 1-310.
  55. Sun, X.H., Sun, S., Li, C.L. and Zhang, G.T., 2008. Seasonal and spatial variation in abundance and egg production of Palacalanus parvus (Copepoda: Calanoida) in/out Jiaozhou Bay, China. Estuar. Coast. Shelf Sci., 79: 637-643. https://doi.org/10.1016/j.ecss.2008.06.004
  56. Tan, Y., Huang, L., Chen, Q. and Huang, X., 2004. Seasonal variation in zooplankton composition and grazing impact on phytoplankton standing stock in the Pearl River Estuary, China. Continent. Shelf Res., 24: 1949-1968. https://doi.org/10.1016/j.csr.2004.06.018
  57. Youn, S.H. and Choi, J.K., 2007. Egg production of the Acartia hongi in Kyeonggi Bay, Korea. J. Mar. Syst., 67: 217-224. https://doi.org/10.1016/j.jmarsys.2006.05.017
  58. Uye, S., 1980. Development of neritic copepods Acartia clausi and A. steueri. I. Some environmental factors affecting egg development and the nature of resting eggs. Bull. Plankton Soc. Japan, 27: 1-9.
  59. Uye, S., 1981. Fecundity studies of neritic calanoid copepods Acartia clausi Giesbrecht and A. steueri Smimov: A simple empirical model of daily egg production. J. Exp. Mar. Biol, Ecol., 50: 255-271. https://doi.org/10.1016/0022-0981(81)90053-8
  60. Uye, S., 1988. Temperature-dependent development and growth of Calanus sinicus (Copepoda: Calanoida) in the laboratory. Hydro-biol., 167/168: 285-293. https://doi.org/10.1007/BF00026316