References
- Barka, E. A., A. Belarbi, C. Hachet, J. Nowak, and J. C. Audran. 2000. Enhancement of in vitro growth and resistance to grey mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol. Lett. 186: 91-95. https://doi.org/10.1111/j.1574-6968.2000.tb09087.x
- Bartlett, D. W., J. M. Clough, J. R. Godwin, A. A. Hall, M. Hamer, and B. Parr-Dobrzanski. 2002. The strobilurin fungicides. Pest. Manag. Sci. 58: 649-662. https://doi.org/10.1002/ps.520
- Beever, R. E., E. P. Larcy, and H. A. Pak. 1989. Strains of Botrytis cinerea resistant to dicarboxymide and benzimidazole fungicides in New Zealand vineyards. Plant Pathol. 38: 427-437. https://doi.org/10.1111/j.1365-3059.1989.tb02163.x
- Besson, F., F. Peypoux, G. Michel, and L. Delcambe. 1976. Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J. Antibiot. 29: 1043-1049. https://doi.org/10.7164/antibiotics.29.1043
- Besson, F., F. Peypoux, G. Michel, and L. Delcambe. 1977. Structure of bacillomycin L, an antibiotic from Bacillus subtilis. Eur. J. Biochem. 77: 61-67. https://doi.org/10.1111/j.1432-1033.1977.tb11641.x
- Chen, T. W. and W. S. Wu. 1999. Biological control of carrot black rot. J. Phytopathol. 147: 99-104.
- Cho, S. J., S. K. Lee, B. J. Cha, Y. H. Kim, and K. S. Shin. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett. 223: 47-51. https://doi.org/10.1016/S0378-1097(03)00329-X
- Cho, S. J., S. Y. Hong, J. Y. Kim, S. Y. Park, M. K. Kim, W. J. Lim, et al. 2003. Endophytic Bacillus sp. CY22 from a balloon flower (Platycodon grandiflorum) produces surfactin isoforms. J. Microbiol. Biotechnol. 13: 859-869.
- Cohen, S. A., M. Meys, and T. L. Tarvin. 1989. The Pico Tag Method. A Manual of Advanced Techniques for Amino Acid Analysis. Millipore, Bedford, MA.
- Cook, R. J., L. S. Thomashow, D. M. Weller, D. Fujimoto, M. Mazzola, G. Bangera, and D. S. Kim. 1995. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. U.S.A. 96: 8937-8942.
- Deleu, M., H. Razafindralambo, Y. Popineau, P. Jacques, P. Thonart, and M. Paquot. 1999. Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf. A Physicochem. Eng. Aspects 61: 47-64.
- Desai, J. D. and I. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64.
- Fiedler, H. P. and W. Umbach. 1987. Cosmetics and toiletries, pp. 350-398. In J. Falbe (ed.). Surfactants in Consumer Products: Theory, Technology and Applications. Springer-Verlag, Heidelberg.
- Grangemard, I., J. M. Bonmatin, J. Bernillon, B. C. Das, and F. Peypoux. 1999. Lichenysin G, a novel family of lipopeptide biosurfactants from Bacillus licheniformis IM 1307: Production, isolation and structural evaluation by NMR and mass spectrometry. J. Antibiot. (Tokyo) 52: 363-373. https://doi.org/10.7164/antibiotics.52.363
- Harris, A. R. and P. G. Adkins. 1999. Versatility of fungal and bacterial isolates for biological control of damping-off disease caused by Rhizoctonia solani and Pythium spp. Biol. Control 15: 10-18. https://doi.org/10.1006/bcon.1999.0694
- He, H., L. A. Silo-Suh, and J. Handelsman. 1994. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 35: 2499-2502. https://doi.org/10.1016/S0040-4039(00)77154-1
- Hiradate, S., S. Yoshida, H. Sugie, H. Yada, and Y. Fujii. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61: 693-698. https://doi.org/10.1016/S0031-9422(02)00365-5
- Horowitz, S. and W. M. Griffin. 1991. Structural analysis of Bacillus licheniformis 86 surfactant. J. Ind. Microbiol. Biotechnol. 7: 45-52.
- Hue, N., L. Serani, and O. Laprevote. 2001. Structural investigation of cyclic peptidolipids from Bacillus subtilis by high-energy tandem mass spectrometry. Rapid Commun. Mass Spectrom. 15: 203-209. https://doi.org/10.1002/1097-0231(20010215)15:3<203::AID-RCM212>3.0.CO;2-6
- Jenny, K., V. Deltrieu, and O. Kappelli. 1993. Lipopeptide production by Bacillus licheniformis, pp. 135-156. In N. Kosaric (ed.). Biosurfactants. Marcel Dekker, New York.
- Kim, P. I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and Y. T. Chi. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97: 942-949. https://doi.org/10.1111/j.1365-2672.2004.02356.x
- Klich, M. A., K. S. Arthur, A. R. Lax, and J. M. Bland. 1994. Iturin A: A potential new fungicide for stored grains. Mycopathologia 127: 123-127. https://doi.org/10.1007/BF01103068
- Kowall, M., J. Vater, B. Kluge, T. Stein, P. Franke, and D. Ziessow. 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colloid Interface Sci. 203: 1-8. https://doi.org/10.1006/jcis.1998.5486
- Lee, S. C., J. S. Yoo, S. H. Kim, S. Y. Chung, C. W. Hwang, W. H. Joo, and Y. L. Choi. 2006. Production and characterization of lipopeptide biosurfactant from Bacillus subtilis A8-8. J. Microbiol. Biotechnol. 16: 716-723.
- Leenders, F., T. H. Stein, B. Kablitz, P. Franke, and J. Vater. 1999. Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. Rapid Commun. Mass Spectrom. 13: 943-949. https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<943::AID-RCM591>3.0.CO;2-0
- Leifert, C., H. Li, S. Chidburee, S. Hampson, S. Workman, D. Sigee, H. A. Epton, and A. Harbour. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J. Appl. Bacteriol. 78: 97-108. https://doi.org/10.1111/j.1365-2672.1995.tb02829.x
- Lin, S. C., M. A. Milton, M. M. Sharma, and G. Georgiou. 1994. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl. Environ. Microbiol. 60: 31-38.
- Maget-Dana, R., L. Thimon, F. Peypoux, and M. Ptack. 1992. Surfactin/Iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051. https://doi.org/10.1016/0300-9084(92)90002-V
- McKeen, C. D., C. C. Relly, and P. L. Pusey. 1996. Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology 76: 136-139.
- Masih, E. I., I. Alie, and B. Paul. 2000. Can the grey mould disease of the grape-vine be controlled by yeasts- FEMS Microbiol. Lett. 189: 233-237. https://doi.org/10.1111/j.1574-6968.2000.tb09236.x
-
Masih, E. I. and B. Paul. 2002. Secretion of
${\beta}$ -1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mould disease of the grapevine. Curr. Microbiol. 44: 391-395. https://doi.org/10.1007/s00284-001-0011-y - Nishikiori, T., H. Naganawa, Y. Muraoka, T. Aoyagi, and H. Umezawa. 1986. The conformational studies of plipastatin A1 by 400 MHz proton magnetic resonance. J. Antibiot. (Tokyo) 39: 860-863. https://doi.org/10.7164/antibiotics.39.860
- Peypoux, F., M. Guimand, G. Michel, L. Delcambe, B. C. Das, and E. Lederec. 1978 Structure of iturin A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17: 3992-3996. https://doi.org/10.1021/bi00612a018
- Peypoux, F., M. T. Pommier, D. Marion, M. Ptak, B. C. Das, and W. M. Griffin. 1986. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot. 39: 636-641. https://doi.org/10.7164/antibiotics.39.636
- Raaijmakers, J. M., M. Vlami, and J. de Souza. 2002. Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81: 537-547. https://doi.org/10.1023/A:1020501420831
- Raposo, R., V. Gomez, T. Urrutia, and P. Melgarejo. 2000. Fitness of Botrytis cinerea associated with dicarboximide resistance. Phytopathology 90: 1246-1249. https://doi.org/10.1094/PHYTO.2000.90.11.1246
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1987. Molecular Cloning - A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Schneider, J. 1999. Doctoral thesis. University of Cologne, Cologne, Germany.
- Schneider, J., K. Taraz, H. Budzikiewicz, P. Jacques, and P. Thonart. 1999. The structure of two fengycins from Bacillus subtilis S499. Z. Naturforsch. 54: 859-865.
- Sheppard, J. D., C. Jumarie, D. G. Cooper, and R. Laprade. 1991. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim. Biophys. Acta 1064: 13-23. https://doi.org/10.1016/0005-2736(91)90406-X
- Stabb, E. V., L. M. Jacobson, and J. Handelsman. 1994. Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl. Environ. Microbiol. 60: 4404-4412.
- Suk, W. S., H. J. Son, G. Lee, and S. J. Lee. 1999. Purification and characterization of biosurfactants produced by Pseudomonas sp. SW 1. J. Microbiol. Biotechnol. 9: 56-61.
- Thaniyavarn, J., N. Roongsawang, T. Kameyama, M. Haruki, T. Imanaka, M. Morikawa, and S. Kanaya. 2003. Production and characterization of biosurfactants from Bacillus licheniformis F2.2. Biosci. Biotechnol. Biochem. 67: 1239-1244. https://doi.org/10.1271/bbb.67.1239
- Trischman, J. A., P. R. Jensen, and W. Fenical. 1994. Halobacillin: A cytotoxic cyclic acylpeptide of the iturin class produced by a marine Bacillus. Tetrahedron Lett. 35: 5571-5574. https://doi.org/10.1016/S0040-4039(00)77249-2
- Vater, J. 1986. Lipopeptides, an attractive class of microbial surfactants. Prog. Colloid Polymer Sci. 72: 12-18. https://doi.org/10.1007/BFb0114473
- Vater, J., B. Kablitz, C. Wilde, P. Franke, N. Mehta, and S. S. Cameotra. 2004. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl. Environ. Microbiol. 68: 6210-6219.
- Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
- Wilson, C. L., E. Wisniewski, A. El-Ghaouth, S. Droby, and E. Chalutz. 1996. Commercialization of antagonistic yeasts for the biological control of postharvest diseases of fruits and vegetables. SIM News 46: 237-242.
- Yakimov, M. M., W. R. Abraham, H. Meyer, I. Giuliana, and P. N. Golyshin. 1999. Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochim. Biophys. Acta 1438: 273-280. https://doi.org/10.1016/S1388-1981(99)00058-X
- Yoshida, S., S. Hiradate, T. Tsukamoto, K. Hatakeda, and A. Shirata. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181-187. https://doi.org/10.1094/PHYTO.2001.91.2.181
- Yu, G. Y., J. B. Sinclair, G. L. Hartman, and B. L. Bertagnolli. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
Cited by
- Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi vol.56, pp.4, 2010, https://doi.org/10.1007/s12223-011-0056-7
- Isolation and characterization ofBacillus subtilisKS1 for the biocontrol of grapevine fungal diseases vol.21, pp.6, 2011, https://doi.org/10.1080/09583157.2011.574208
- Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants vol.12, pp.1, 2010, https://doi.org/10.3390/ijms12010141
- Secondary metabolites of soil Bacillus spp. vol.33, pp.8, 2010, https://doi.org/10.1007/s10529-011-0617-5
- Isolation and Identification of Lipopeptide Antibiotics from Paenibacillus elgii B69 with Inhibitory Activity Against Methicillin-Resistant Staphylococcus aureus vol.49, pp.6, 2011, https://doi.org/10.1007/s12275-011-1153-7
- Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC vol.109, pp.9, 2010, https://doi.org/10.1002/bit.24524
- Characterization of an antifungal compound produced by Bacillus sp. strain A5F that inhibits Sclerotinia sclerotiorum vol.52, pp.6, 2012, https://doi.org/10.1002/jobm.201100463
- Analysis of Free Amino Acids during Fermentation by Bacillus subtilis Using Capillary Electrophoresis vol.17, pp.6, 2010, https://doi.org/10.1007/s12257-012-0292-y
- Isolation and characterisation ofBacillus amyloliquefaciensS13-3 as a biological control agent for anthracnose caused byColletotrichum gloeosporioides vol.22, pp.6, 2012, https://doi.org/10.1080/09583157.2012.679644
- Culture-Based Assessment of Microbial Communities in Soil Suppressive to Potato Common Scab vol.96, pp.5, 2010, https://doi.org/10.1094/pdis-05-11-0441
- 메주에서 분리한 Bacillus polyfermenticus CJ6가 생산하는 항진균 물질의 분리 및 특성 vol.40, pp.1, 2012, https://doi.org/10.4014/kjmb.1203.03001
- Paenibacillus sp. IUB225-08의 Colletotrichum gloeosporioides에 대한 항균활성 vol.40, pp.4, 2012, https://doi.org/10.4489/kjm.2012.40.4.258
- Characterization of a Blend-Biosurfactant of Glycolipid and Lipopeptide Produced by Bacillus subtilis TU2 Isolated from Underground Oil-Extraction Wastewater vol.23, pp.3, 2010, https://doi.org/10.4014/jmb.1207.09020
- Diversity and Active Mechanism of Fengycin-Type Cyclopeptides from Bacillus subtilis XF-1 Against Plasmodiophora brassicae vol.23, pp.3, 2010, https://doi.org/10.4014/jmb.1208.08065
- Biosurfactants in agriculture vol.97, pp.3, 2010, https://doi.org/10.1007/s00253-012-4641-8
- Bacillus sp. BS061 Suppresses Powdery Mildew and Gray Mold vol.41, pp.2, 2010, https://doi.org/10.5941/myco.2013.41.2.108
- Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil vol.20, pp.10, 2010, https://doi.org/10.1007/s11356-013-1752-4
- Antibiofilm Activity of Biosurfactant Producing Coral Associated Bacteria Isolated from Gulf of Mannar vol.54, pp.4, 2010, https://doi.org/10.1007/s12088-014-0474-8
- Optimization of Antifungal Lipopeptide Production from Bacillus sp. BH072 by Response Surface Methodology vol.52, pp.4, 2010, https://doi.org/10.1007/s12275-014-3354-3
- Cross-Flow Microfiltration ofBacillus SubtilisBroths under Various Culture Times vol.49, pp.6, 2010, https://doi.org/10.1080/01496395.2013.871037
- Assessment of the effect of biosurfactant produced byPseudomonas aeruginosain lethality ofBacillus thuringiensisBerl. against 3rd instars larvae of white cabbage butterfly (Pieris brassicaeL.) vol.47, pp.17, 2010, https://doi.org/10.1080/03235408.2013.869889
- Substrate dependent in vitro antifungal activity of Bacillus sp strain AR2 vol.13, pp.None, 2010, https://doi.org/10.1186/1475-2859-13-67
- Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans vol.105, pp.5, 2010, https://doi.org/10.1007/s10482-014-0135-2
- Purification and characterization of antimicrobial substances from Bacillus licheniformis BFP011 vol.50, pp.6, 2010, https://doi.org/10.1134/s0003683814110015
- Enhanced Transdermal Peptide Delivery and Stability by Lipid Conjugation: Epidermal Permeation, Stereoselectivity and Mechanistic Insights vol.31, pp.12, 2014, https://doi.org/10.1007/s11095-014-1420-5
- Synergistic fungicidal activity of the lipopeptide bacillomycin D with amphotericin B against pathogenicCandidaspecies vol.15, pp.4, 2010, https://doi.org/10.1093/femsyr/fov022
- Antimicrobial peptides of the genus Bacillus: a new era for antibiotics vol.61, pp.2, 2010, https://doi.org/10.1139/cjm-2014-0613
- Characterization of antagonistic‐potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato vol.55, pp.1, 2010, https://doi.org/10.1002/jobm.201300528
- Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer vol.5, pp.None, 2010, https://doi.org/10.1038/srep10316
- Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation vol.16, pp.3, 2010, https://doi.org/10.3390/ijms16034814
- Antimicrobial Cyclic Peptides for Plant Disease Control vol.31, pp.1, 2010, https://doi.org/10.5423/ppj.rw.08.2014.0074
- The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen‐associated molecular pat vol.17, pp.4, 2010, https://doi.org/10.1111/1462-2920.12538
- Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds vol.31, pp.6, 2010, https://doi.org/10.1007/s11274-015-1847-9
- Detection of biosurfactants in Bacillus species: genes and products identification vol.119, pp.4, 2010, https://doi.org/10.1111/jam.12893
- Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum vol.55, pp.11, 2015, https://doi.org/10.1002/jobm.201500220
- Functional Role of Bacteria from Invasive Phragmites australis in Promotion of Host Growth vol.72, pp.2, 2016, https://doi.org/10.1007/s00248-016-0793-x
- Identification and Characterization of Lipopeptides from Bacillus subtilis B1 Against Sapstain Fungus of Rubberwood Through MALDI-TOF-MS and RT-PCR vol.73, pp.1, 2010, https://doi.org/10.1007/s00284-016-1025-9
- Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone vol.109, pp.10, 2016, https://doi.org/10.1007/s10482-016-0736-z
- Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani vol.23, pp.7, 2016, https://doi.org/10.1007/s11356-015-5826-3
- Inhibitory potential of biosurfactants from Bacillus amyloliquefaciens derived from mangrove soil against Vibrio parahaemolyticus vol.66, pp.3, 2010, https://doi.org/10.1007/s13213-016-1216-4
- Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms vol.2, pp.None, 2010, https://doi.org/10.1038/npjbiofilms.2015.27
- The Antibiosis Action and Rice-Induced Resistance, Mediated by a Lipopeptide from Bacillus amyloliquefaciens B014, in Controlling Rice Disease Caused by Xanthomonas oryzae pv. oryzae vol.26, pp.4, 2010, https://doi.org/10.4014/jmb.1510.10072
- Bacillomycin D and its combination with amphotericin B: promising antifungal compounds with powerful antibiofilm activity and wound‐healing potency vol.120, pp.2, 2010, https://doi.org/10.1111/jam.13030
- Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae vol.32, pp.3, 2016, https://doi.org/10.5423/ppj.nt.12.2015.0274
- Endophytic Bacillus subtilis MJMP2 from Kimchi inhibits Xanthomonas oryzae pv. oryzae, the pathogen of Rice bacterial blight disease vol.59, pp.2, 2016, https://doi.org/10.3839/jabc.2016.027
- Lipopeptide production by Bacillus subtilis R1 and its possible applications vol.47, pp.4, 2016, https://doi.org/10.1016/j.bjm.2016.07.006
- Identification of a novel endophytic Bacillus sp. from Capsicum annuum with highly efficient and broad spectrum plant probiotic effect vol.121, pp.4, 2016, https://doi.org/10.1111/jam.13214
- Study of the correlation between fengycin promoter expression and its production by Bacillus subtilis under different culture conditions and the impact on surfactin production vol.199, pp.10, 2010, https://doi.org/10.1007/s00203-017-1406-x
- Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms vol.110, pp.8, 2010, https://doi.org/10.1007/s10482-017-0874-y
- Green mitigation strategy for cultural heritage: bacterial potential for biocide production vol.24, pp.5, 2010, https://doi.org/10.1007/s11356-016-8175-y
- Isolation and identification of antifungal peptides from Bacillus amyloliquefaciens W10 vol.24, pp.32, 2010, https://doi.org/10.1007/s11356-017-0179-8
- Bacillus species as versatile weapons for plant pathogens: a review vol.31, pp.3, 2010, https://doi.org/10.1080/13102818.2017.1286950
- Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review vol.37, pp.3, 2017, https://doi.org/10.3109/07388551.2016.1163324
- Key Impact of an Uncommon Plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 Developmental Traits and Lipopeptide Production vol.8, pp.None, 2010, https://doi.org/10.3389/fmicb.2017.00017
- Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides vol.8, pp.None, 2010, https://doi.org/10.3389/fmicb.2017.00061
- Antibiosis and bmyB Gene Presence As Prevalent Traits for the Selection of Efficient Bacillus Biocontrol Agents against Crown Gall Disease vol.8, pp.None, 2010, https://doi.org/10.3389/fpls.2017.01363
- Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12 vol.8, pp.None, 2010, https://doi.org/10.3389/fpls.2017.02010
- Impact of Bacillus cereus NRKT on grape ripe rot disease through resveratrol synthesis in berry skin vol.73, pp.1, 2010, https://doi.org/10.1002/ps.4283
- Kinetic study and modeling of biosurfactant production using Bacillus sp. vol.27, pp.None, 2010, https://doi.org/10.1016/j.ejbt.2017.03.005
- Complete Genome Sequence of Bacillus subtilis GQJK2, a Plant Growth-Promoting Rhizobacterium with Antifungal Activity vol.5, pp.22, 2010, https://doi.org/10.1128/genomea.00467-17
- Properties of Antimicrobial Substances Produced by Bacillus species Isolated from Rice Straw vol.45, pp.2, 2010, https://doi.org/10.4014/mbl.1611.11004
- 생물적 방제균 Bacillus amyloliquefaciens LM11의 유래 생물계면활성물질과 항균활성과의 상관관계 vol.23, pp.2, 2010, https://doi.org/10.5423/rpd.2017.23.2.177
- Microbial diversity of saline environments: searching for cytotoxic activities vol.7, pp.1, 2010, https://doi.org/10.1186/s13568-017-0527-6
- Cyclic lipopeptide signature as fingerprinting for the screening of halotolerant Bacillus strains towards microbial enhanced oil recovery vol.102, pp.3, 2010, https://doi.org/10.1007/s00253-017-8675-9
- The antimicrobial and antiadhesion activities of micellar solutions of surfactin, CTAB and CPCl with terpinen-4-ol: applications to control oral pathogens vol.34, pp.6, 2010, https://doi.org/10.1007/s11274-018-2472-1
- Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis vol.25, pp.30, 2010, https://doi.org/10.1007/s11356-017-9241-9
- Epilithic Biofilms in Lake Baikal: Screening and Diversity of PKS and NRPS Genes in the Genomes of Heterotrophic Bacteria vol.67, pp.4, 2010, https://doi.org/10.21307/pjm-2018-060
- Plipastatin A1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74 contributes to the control of gray mold disease in tomato vol.8, pp.2, 2018, https://doi.org/10.1007/s13205-018-1144-z
- Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae vol.34, pp.2, 2010, https://doi.org/10.5423/ppj.oa.11.2017.0242
- Bacillus velezensis CC09: A Potential ‘Vaccine’ for Controlling Wheat Diseases vol.31, pp.6, 2010, https://doi.org/10.1094/mpmi-09-17-0227-r
- In situdownstream strategies for cost-effective bio/surfactant recovery : Strategies for Cost-Effective Bio/Surfactant Recovery vol.65, pp.4, 2018, https://doi.org/10.1002/bab.1641
- Bacillus sp. strain M10 as a potential biocontrol agent protecting chili pepper and tomato fruits from anthracnose disease caused by Colletotrichum capsici vol.63, pp.6, 2010, https://doi.org/10.1007/s10526-018-9902-8
- Lipopeptides from Bacillus amyloliquefaciens strain 32a as promising biocontrol compounds against the plant pathogen Agrobacterium tumefaciens vol.25, pp.36, 2010, https://doi.org/10.1007/s11356-018-3570-1
- Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae vol.41, pp.1, 2010, https://doi.org/10.1080/07060661.2018.1564792
- Chemical Compounds Produced by Bacillus sp. Factories and Their Role in Nature vol.19, pp.5, 2010, https://doi.org/10.2174/1389557518666180829113612
- Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.00302
- Antifungal Activities of Bacillus subtilis Lipopeptides to Two Venturia inaequalis Strains Possessing Different Tebuconazole Sensitivity vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.02327
- A suite of complementary biocontrol traits allows a native consortium of root‐associated bacteria to protect their host plant from a fungal sudden‐wilt disease vol.28, pp.5, 2010, https://doi.org/10.1111/mec.15012
- A New Hope: Self-Assembling Peptides with Antimicrobial Activity vol.11, pp.4, 2010, https://doi.org/10.3390/pharmaceutics11040166
- Interrelation of Chemical Composition and Biological Properties of Microbial Surfactants vol.81, pp.3, 2010, https://doi.org/10.15407/microbiolj81.03.084
- Capability of iturin from Bacillus subtilis to inhibit Candida albicans in vitro and in vivo vol.103, pp.11, 2010, https://doi.org/10.1007/s00253-019-09805-z
- Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3 vol.103, pp.13, 2019, https://doi.org/10.1007/s00253-019-09792-1
- Molecular Docking and Dynamics Simulation of Protein β-Tubulin and Antifungal Cyclic Lipopeptides vol.24, pp.18, 2010, https://doi.org/10.3390/molecules24183387
- The Mode of Action of Bacillus Species against Fusarium graminearum, Tools for Investigation, and Future Prospects vol.11, pp.10, 2010, https://doi.org/10.3390/toxins11100606
- Suppression of Sclerotinia sclerotiorum by the Induction of Systemic Resistance and Regulation of Antioxidant Pathways in Tomato Using Fengycin Produced by Bacillus amyloliquefaciens FZB42 vol.9, pp.10, 2010, https://doi.org/10.3390/biom9100613
- Inhibitory Abilities of Bacillus Isolates and Their Culture Filtrates against the Gray Mold Caused by Botrytis cinerea on Postharvest Fruit vol.35, pp.5, 2019, https://doi.org/10.5423/ppj.oa.03.2019.0064
- A novel antimicrobial protein of the endophytic Bacillus amyloliquefaciens and its control effect against Fusarium chlamydosporum vol.64, pp.6, 2019, https://doi.org/10.1007/s10526-019-09972-y
- Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens vol.19, pp.None, 2010, https://doi.org/10.1186/s12866-019-1440-8
- Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization vol.18, pp.None, 2010, https://doi.org/10.1186/s12934-019-1121-1
- Production of antifungal compounds by Bacillus spp. isolates and its capacity for controlling citrus black spot under field conditions vol.36, pp.1, 2010, https://doi.org/10.1007/s11274-019-2772-0
- Recovery of Biosurfactant Using Different Extraction Solvent by Rhizospheric Bacteria Isolated from Rice-husk and Poultry Waste Biochar Amended Soil vol.7, pp.1, 2010, https://doi.org/10.1080/2314808x.2020.1797377
- Isolation and Characterization of Fengycins Produced by Bacillus amyloliquefaciens JFL21 and Its Broad-Spectrum Antimicrobial Potential Against Multidrug-Resistant Foodborne Pathogens vol.11, pp.None, 2010, https://doi.org/10.3389/fmicb.2020.579621
- Transcriptional Profiling of Diffusible Lipopeptides and Fungal Virulence Genes During Bacillus amyloliquefaciens EZ1509-Mediated Suppression of Sclerotinia sclerotiorum vol.110, pp.2, 2020, https://doi.org/10.1094/phyto-05-19-0156-r
- Stepwise-Selected Bacillus amyloliquefaciens and B. subtilis Strains from Composted Aromatic Plant Waste Able to Control Soil-Borne Diseases vol.10, pp.2, 2010, https://doi.org/10.3390/agriculture10020030
- Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection vol.17, pp.4, 2010, https://doi.org/10.3390/ijerph17041434
- Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum) vol.51, pp.1, 2010, https://doi.org/10.1007/s42770-019-00172-5
- 식물생장촉진근권세균 Bacillus subtilis YGB36을 이용한 고추 탄저병의 생물학적 방제 vol.26, pp.1, 2010, https://doi.org/10.5423/rpd.2020.26.1.8
- Bacillomycin D effectively controls growth of Malassezia globosa by disrupting the cell membrane vol.104, pp.8, 2010, https://doi.org/10.1007/s00253-020-10462-w
- Biosurfactants Production Using Permeate from Whey Ultrafiltration and Bioproduct Recovery by Membrane Separation Process vol.23, pp.3, 2020, https://doi.org/10.1002/jsde.12399
- Screening and Application of Bacillus Strains Isolated from Nonrhizospheric Rice Soil for the Biocontrol of Rice Blast vol.36, pp.3, 2010, https://doi.org/10.5423/ppj.oa.02.2020.0028
- Biological control: a sustainable and practical approach for plant disease management vol.70, pp.6, 2010, https://doi.org/10.1080/09064710.2020.1784262
- Total Synthesis of Cyclic Lipodepsipeptide Ophiotine vol.56, pp.5, 2010, https://doi.org/10.1007/s10600-020-03175-z
- Bacillus subtilis : a universal cell factory for industry, agriculture, biomaterials and medicine vol.19, pp.None, 2010, https://doi.org/10.1186/s12934-020-01436-8
- Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis vol.19, pp.1, 2010, https://doi.org/10.1186/s12934-020-01468-0
- Biosurfactants as a Novel Additive in Pharmaceutical Formulations: Current Trends and Future Implications vol.21, pp.11, 2020, https://doi.org/10.2174/1389200221666201008143238
- Two Novel Bacillus Strains (subtilis and simplex Species) with Promising Potential for the Biocontrol of Zymoseptoria tritici, the Causal Agent of Septoria Tritici Blotch of Wheat vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6611657
- Profiling of Metabolites of Bacillus spp. and Their Application in Sustainable Plant Growth Promotion and Biocontrol vol.5, pp.None, 2021, https://doi.org/10.3389/fsufs.2021.605195
- Isolation and yield optimization of lipopeptides from Bacillus subtilis Z‐14 active against wheat take‐all caused by Gaeumannomyces graminis var. tritici vol.44, pp.4, 2010, https://doi.org/10.1002/jssc.201901274
- Optimization of iturin A production from Bacillus subtilis ZK-H2 in submerge fermentation by response surface methodology vol.11, pp.2, 2010, https://doi.org/10.1007/s13205-020-02540-7
- Bacillus spp. metabolites are effective in eradicating Aedes aegypti (Diptera: Culicidae) larvae with low toxicity to non-target species vol.179, pp.None, 2010, https://doi.org/10.1016/j.jip.2020.107525
- Biocontrole da antracnose em frutos de mamoeiro por bactérias epifíticas formadoras de biofilme vol.47, pp.1, 2010, https://doi.org/10.1590/0100-5405/216998
- An Antifungal Chitosanase from Bacillus subtilis SH21 vol.26, pp.7, 2010, https://doi.org/10.3390/molecules26071863
- Root Zone Management for Improving Seedling Quality of Organically Produced Horticultural Crops vol.11, pp.4, 2010, https://doi.org/10.3390/agronomy11040630
- Gut Bacteria of Rattus rattus (Rat) Produce Broad-Spectrum Antibacterial Lipopeptides vol.6, pp.18, 2010, https://doi.org/10.1021/acsomega.1c01137
- Detection of simultaneous production of kurstakin, fengycin and surfactin lipopeptides in Bacillus mojavensis using a novel gel-based method and MALDI-TOF spectrometry vol.37, pp.6, 2010, https://doi.org/10.1007/s11274-021-03064-9
- Antagonistic Activity of Bacillus velezensis SDTB038 against Phytophthora infestans in Potato vol.105, pp.6, 2021, https://doi.org/10.1094/pdis-08-20-1666-re
- Fengycin A Analogues with Enhanced Chemical Stability and Antifungal Properties vol.23, pp.12, 2010, https://doi.org/10.1021/acs.orglett.1c01387
- Comparison of different cultures and culturing conditions for the biological deterioration of organic load from real saline bilge wastewater: microbial diversity insights and ecotoxicity assessment vol.28, pp.27, 2010, https://doi.org/10.1007/s11356-021-13153-9
- Bacillus subtilis strain BS06 protects soybean roots from Fusarium oxysporum infection vol.368, pp.15, 2010, https://doi.org/10.1093/femsle/fnab102
- Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries vol.10, pp.9, 2010, https://doi.org/10.3390/antiox10091472
- A Thermotolerant Marine Bacillus amyloliquefaciens S185 Producing Iturin A5 for Antifungal Activity against Fusarium oxysporum f. sp. cubense vol.19, pp.9, 2010, https://doi.org/10.3390/md19090516
- Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains vol.10, pp.5, 2010, https://doi.org/10.1002/mbo3.1241
- Bacillus amyloliquefaciens-Derived Lipopeptide Biosurfactants Inhibit Biofilm Formation and Expression of Biofilm-Related Genes of Staphylococcus aureus vol.10, pp.10, 2010, https://doi.org/10.3390/antibiotics10101252
- Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae vol.41, pp.7, 2010, https://doi.org/10.1080/07388551.2021.1898325
- Biological Control of Celery Powdery Mildew Disease Caused by Erysiphe heraclei DC In Vitro and In Vivo Conditions vol.10, pp.11, 2010, https://doi.org/10.3390/plants10112342
- Microbial biocontrol agents against chilli plant pathogens over synthetic pesticides: a review vol.87, pp.4, 2010, https://doi.org/10.1007/s43538-021-00053-2
- Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-020-80231-2
- Effects of lipopeptide biosurfactants on clinical strains of Malassezia furfur growth and biofilm formation vol.59, pp.12, 2021, https://doi.org/10.1093/mmy/myab051
- Biocontrol of Large Patch Disease in Zoysiagrass (Zoysia japonica) by Bacillus subtilis SA-15: Identification of Active Compounds and Synergism with a Fungicide vol.8, pp.1, 2010, https://doi.org/10.3390/horticulturae8010034