DOI QR코드

DOI QR Code

Production of Biosurfactant Lipopeptides Iturin A, Fengycin, and Surfactin A from Bacillus subtilis CMB32 for Control of Colletotrichum gloeosporioides

  • Kim, Pyoung-Il (School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Ryu, Jae-Won (Department of Biotechnology, Graduate School, Chonnam National University) ;
  • Kim, Young-Hwan (Proteomics Team, Korea Basic Science Institute) ;
  • Chi, Youn-Tae (School of Biological Sciences and Technology and Biotechnology Research Institute, Chonnam National University)
  • Published : 2010.01.31

Abstract

A bacterial strain isolated from soil for its potential to control the anthracnose disease caused by Colletotrichum gloeosporioides was identified as a Bacillus subtilis. Bacillus subtilis CMB32 produced antifungal agents on M9 broth at $30^{\circ}C$. Biosurfactant lipopeptides produced by Bacillus subtilis CMB32 were precipitated by adjusting to pH 2 and extracting using chloroform/methanol, and then were purified using column chromatography and reverse-phase HPLC. The molecular masses of the lipopeptides were estimated by MALDI-TOF mass spectrometry as (a) 1,080, (b) 1,486, and (c) 1,044 Da, respectively. They had cyclic structures and amino acid compositions of (a) Pro, Asx, Ser, Tyr, Glx, (b) Glx, Tyr, Thr, Ala, Pro, lie, and (c) Glx, Leu, Val, Asx, respectively. Further analysis revealed that Bacillus subtilis CMB32 produced three antifungal lipopeptides: (a) iturin A, (b) fengycin, and (c) surfactin A.

Keywords

References

  1. Barka, E. A., A. Belarbi, C. Hachet, J. Nowak, and J. C. Audran. 2000. Enhancement of in vitro growth and resistance to grey mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol. Lett. 186: 91-95. https://doi.org/10.1111/j.1574-6968.2000.tb09087.x
  2. Bartlett, D. W., J. M. Clough, J. R. Godwin, A. A. Hall, M. Hamer, and B. Parr-Dobrzanski. 2002. The strobilurin fungicides. Pest. Manag. Sci. 58: 649-662. https://doi.org/10.1002/ps.520
  3. Beever, R. E., E. P. Larcy, and H. A. Pak. 1989. Strains of Botrytis cinerea resistant to dicarboxymide and benzimidazole fungicides in New Zealand vineyards. Plant Pathol. 38: 427-437. https://doi.org/10.1111/j.1365-3059.1989.tb02163.x
  4. Besson, F., F. Peypoux, G. Michel, and L. Delcambe. 1976. Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J. Antibiot. 29: 1043-1049. https://doi.org/10.7164/antibiotics.29.1043
  5. Besson, F., F. Peypoux, G. Michel, and L. Delcambe. 1977. Structure of bacillomycin L, an antibiotic from Bacillus subtilis. Eur. J. Biochem. 77: 61-67. https://doi.org/10.1111/j.1432-1033.1977.tb11641.x
  6. Chen, T. W. and W. S. Wu. 1999. Biological control of carrot black rot. J. Phytopathol. 147: 99-104.
  7. Cho, S. J., S. K. Lee, B. J. Cha, Y. H. Kim, and K. S. Shin. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett. 223: 47-51. https://doi.org/10.1016/S0378-1097(03)00329-X
  8. Cho, S. J., S. Y. Hong, J. Y. Kim, S. Y. Park, M. K. Kim, W. J. Lim, et al. 2003. Endophytic Bacillus sp. CY22 from a balloon flower (Platycodon grandiflorum) produces surfactin isoforms. J. Microbiol. Biotechnol. 13: 859-869.
  9. Cohen, S. A., M. Meys, and T. L. Tarvin. 1989. The Pico Tag Method. A Manual of Advanced Techniques for Amino Acid Analysis. Millipore, Bedford, MA.
  10. Cook, R. J., L. S. Thomashow, D. M. Weller, D. Fujimoto, M. Mazzola, G. Bangera, and D. S. Kim. 1995. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. U.S.A. 96: 8937-8942.
  11. Deleu, M., H. Razafindralambo, Y. Popineau, P. Jacques, P. Thonart, and M. Paquot. 1999. Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf. A Physicochem. Eng. Aspects 61: 47-64.
  12. Desai, J. D. and I. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64.
  13. Fiedler, H. P. and W. Umbach. 1987. Cosmetics and toiletries, pp. 350-398. In J. Falbe (ed.). Surfactants in Consumer Products: Theory, Technology and Applications. Springer-Verlag, Heidelberg.
  14. Grangemard, I., J. M. Bonmatin, J. Bernillon, B. C. Das, and F. Peypoux. 1999. Lichenysin G, a novel family of lipopeptide biosurfactants from Bacillus licheniformis IM 1307: Production, isolation and structural evaluation by NMR and mass spectrometry. J. Antibiot. (Tokyo) 52: 363-373. https://doi.org/10.7164/antibiotics.52.363
  15. Harris, A. R. and P. G. Adkins. 1999. Versatility of fungal and bacterial isolates for biological control of damping-off disease caused by Rhizoctonia solani and Pythium spp. Biol. Control 15: 10-18. https://doi.org/10.1006/bcon.1999.0694
  16. He, H., L. A. Silo-Suh, and J. Handelsman. 1994. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 35: 2499-2502. https://doi.org/10.1016/S0040-4039(00)77154-1
  17. Hiradate, S., S. Yoshida, H. Sugie, H. Yada, and Y. Fujii. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61: 693-698. https://doi.org/10.1016/S0031-9422(02)00365-5
  18. Horowitz, S. and W. M. Griffin. 1991. Structural analysis of Bacillus licheniformis 86 surfactant. J. Ind. Microbiol. Biotechnol. 7: 45-52.
  19. Hue, N., L. Serani, and O. Laprevote. 2001. Structural investigation of cyclic peptidolipids from Bacillus subtilis by high-energy tandem mass spectrometry. Rapid Commun. Mass Spectrom. 15: 203-209. https://doi.org/10.1002/1097-0231(20010215)15:3<203::AID-RCM212>3.0.CO;2-6
  20. Jenny, K., V. Deltrieu, and O. Kappelli. 1993. Lipopeptide production by Bacillus licheniformis, pp. 135-156. In N. Kosaric (ed.). Biosurfactants. Marcel Dekker, New York.
  21. Kim, P. I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and Y. T. Chi. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97: 942-949. https://doi.org/10.1111/j.1365-2672.2004.02356.x
  22. Klich, M. A., K. S. Arthur, A. R. Lax, and J. M. Bland. 1994. Iturin A: A potential new fungicide for stored grains. Mycopathologia 127: 123-127. https://doi.org/10.1007/BF01103068
  23. Kowall, M., J. Vater, B. Kluge, T. Stein, P. Franke, and D. Ziessow. 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colloid Interface Sci. 203: 1-8. https://doi.org/10.1006/jcis.1998.5486
  24. Lee, S. C., J. S. Yoo, S. H. Kim, S. Y. Chung, C. W. Hwang, W. H. Joo, and Y. L. Choi. 2006. Production and characterization of lipopeptide biosurfactant from Bacillus subtilis A8-8. J. Microbiol. Biotechnol. 16: 716-723.
  25. Leenders, F., T. H. Stein, B. Kablitz, P. Franke, and J. Vater. 1999. Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. Rapid Commun. Mass Spectrom. 13: 943-949. https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<943::AID-RCM591>3.0.CO;2-0
  26. Leifert, C., H. Li, S. Chidburee, S. Hampson, S. Workman, D. Sigee, H. A. Epton, and A. Harbour. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J. Appl. Bacteriol. 78: 97-108. https://doi.org/10.1111/j.1365-2672.1995.tb02829.x
  27. Lin, S. C., M. A. Milton, M. M. Sharma, and G. Georgiou. 1994. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl. Environ. Microbiol. 60: 31-38.
  28. Maget-Dana, R., L. Thimon, F. Peypoux, and M. Ptack. 1992. Surfactin/Iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051. https://doi.org/10.1016/0300-9084(92)90002-V
  29. McKeen, C. D., C. C. Relly, and P. L. Pusey. 1996. Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology 76: 136-139.
  30. Masih, E. I., I. Alie, and B. Paul. 2000. Can the grey mould disease of the grape-vine be controlled by yeasts- FEMS Microbiol. Lett. 189: 233-237. https://doi.org/10.1111/j.1574-6968.2000.tb09236.x
  31. Masih, E. I. and B. Paul. 2002. Secretion of ${\beta}$-1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mould disease of the grapevine. Curr. Microbiol. 44: 391-395. https://doi.org/10.1007/s00284-001-0011-y
  32. Nishikiori, T., H. Naganawa, Y. Muraoka, T. Aoyagi, and H. Umezawa. 1986. The conformational studies of plipastatin A1 by 400 MHz proton magnetic resonance. J. Antibiot. (Tokyo) 39: 860-863. https://doi.org/10.7164/antibiotics.39.860
  33. Peypoux, F., M. Guimand, G. Michel, L. Delcambe, B. C. Das, and E. Lederec. 1978 Structure of iturin A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17: 3992-3996. https://doi.org/10.1021/bi00612a018
  34. Peypoux, F., M. T. Pommier, D. Marion, M. Ptak, B. C. Das, and W. M. Griffin. 1986. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot. 39: 636-641. https://doi.org/10.7164/antibiotics.39.636
  35. Raaijmakers, J. M., M. Vlami, and J. de Souza. 2002. Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81: 537-547. https://doi.org/10.1023/A:1020501420831
  36. Raposo, R., V. Gomez, T. Urrutia, and P. Melgarejo. 2000. Fitness of Botrytis cinerea associated with dicarboximide resistance. Phytopathology 90: 1246-1249. https://doi.org/10.1094/PHYTO.2000.90.11.1246
  37. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1987. Molecular Cloning - A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  38. Schneider, J. 1999. Doctoral thesis. University of Cologne, Cologne, Germany.
  39. Schneider, J., K. Taraz, H. Budzikiewicz, P. Jacques, and P. Thonart. 1999. The structure of two fengycins from Bacillus subtilis S499. Z. Naturforsch. 54: 859-865.
  40. Sheppard, J. D., C. Jumarie, D. G. Cooper, and R. Laprade. 1991. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim. Biophys. Acta 1064: 13-23. https://doi.org/10.1016/0005-2736(91)90406-X
  41. Stabb, E. V., L. M. Jacobson, and J. Handelsman. 1994. Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl. Environ. Microbiol. 60: 4404-4412.
  42. Suk, W. S., H. J. Son, G. Lee, and S. J. Lee. 1999. Purification and characterization of biosurfactants produced by Pseudomonas sp. SW 1. J. Microbiol. Biotechnol. 9: 56-61.
  43. Thaniyavarn, J., N. Roongsawang, T. Kameyama, M. Haruki, T. Imanaka, M. Morikawa, and S. Kanaya. 2003. Production and characterization of biosurfactants from Bacillus licheniformis F2.2. Biosci. Biotechnol. Biochem. 67: 1239-1244. https://doi.org/10.1271/bbb.67.1239
  44. Trischman, J. A., P. R. Jensen, and W. Fenical. 1994. Halobacillin: A cytotoxic cyclic acylpeptide of the iturin class produced by a marine Bacillus. Tetrahedron Lett. 35: 5571-5574. https://doi.org/10.1016/S0040-4039(00)77249-2
  45. Vater, J. 1986. Lipopeptides, an attractive class of microbial surfactants. Prog. Colloid Polymer Sci. 72: 12-18. https://doi.org/10.1007/BFb0114473
  46. Vater, J., B. Kablitz, C. Wilde, P. Franke, N. Mehta, and S. S. Cameotra. 2004. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl. Environ. Microbiol. 68: 6210-6219.
  47. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  48. Wilson, C. L., E. Wisniewski, A. El-Ghaouth, S. Droby, and E. Chalutz. 1996. Commercialization of antagonistic yeasts for the biological control of postharvest diseases of fruits and vegetables. SIM News 46: 237-242.
  49. Yakimov, M. M., W. R. Abraham, H. Meyer, I. Giuliana, and P. N. Golyshin. 1999. Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochim. Biophys. Acta 1438: 273-280. https://doi.org/10.1016/S1388-1981(99)00058-X
  50. Yoshida, S., S. Hiradate, T. Tsukamoto, K. Hatakeda, and A. Shirata. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181-187. https://doi.org/10.1094/PHYTO.2001.91.2.181
  51. Yu, G. Y., J. B. Sinclair, G. L. Hartman, and B. L. Bertagnolli. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5

Cited by

  1. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi vol.56, pp.4, 2010, https://doi.org/10.1007/s12223-011-0056-7
  2. Isolation and characterization ofBacillus subtilisKS1 for the biocontrol of grapevine fungal diseases vol.21, pp.6, 2011, https://doi.org/10.1080/09583157.2011.574208
  3. Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants vol.12, pp.1, 2010, https://doi.org/10.3390/ijms12010141
  4. Secondary metabolites of soil Bacillus spp. vol.33, pp.8, 2010, https://doi.org/10.1007/s10529-011-0617-5
  5. Isolation and Identification of Lipopeptide Antibiotics from Paenibacillus elgii B69 with Inhibitory Activity Against Methicillin-Resistant Staphylococcus aureus vol.49, pp.6, 2011, https://doi.org/10.1007/s12275-011-1153-7
  6. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC vol.109, pp.9, 2010, https://doi.org/10.1002/bit.24524
  7. Characterization of an antifungal compound produced by Bacillus sp. strain A5F that inhibits Sclerotinia sclerotiorum vol.52, pp.6, 2012, https://doi.org/10.1002/jobm.201100463
  8. Analysis of Free Amino Acids during Fermentation by Bacillus subtilis Using Capillary Electrophoresis vol.17, pp.6, 2010, https://doi.org/10.1007/s12257-012-0292-y
  9. Isolation and characterisation ofBacillus amyloliquefaciensS13-3 as a biological control agent for anthracnose caused byColletotrichum gloeosporioides vol.22, pp.6, 2012, https://doi.org/10.1080/09583157.2012.679644
  10. Culture-Based Assessment of Microbial Communities in Soil Suppressive to Potato Common Scab vol.96, pp.5, 2010, https://doi.org/10.1094/pdis-05-11-0441
  11. 메주에서 분리한 Bacillus polyfermenticus CJ6가 생산하는 항진균 물질의 분리 및 특성 vol.40, pp.1, 2012, https://doi.org/10.4014/kjmb.1203.03001
  12. Paenibacillus sp. IUB225-08의 Colletotrichum gloeosporioides에 대한 항균활성 vol.40, pp.4, 2012, https://doi.org/10.4489/kjm.2012.40.4.258
  13. Characterization of a Blend-Biosurfactant of Glycolipid and Lipopeptide Produced by Bacillus subtilis TU2 Isolated from Underground Oil-Extraction Wastewater vol.23, pp.3, 2010, https://doi.org/10.4014/jmb.1207.09020
  14. Diversity and Active Mechanism of Fengycin-Type Cyclopeptides from Bacillus subtilis XF-1 Against Plasmodiophora brassicae vol.23, pp.3, 2010, https://doi.org/10.4014/jmb.1208.08065
  15. Biosurfactants in agriculture vol.97, pp.3, 2010, https://doi.org/10.1007/s00253-012-4641-8
  16. Bacillus sp. BS061 Suppresses Powdery Mildew and Gray Mold vol.41, pp.2, 2010, https://doi.org/10.5941/myco.2013.41.2.108
  17. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil vol.20, pp.10, 2010, https://doi.org/10.1007/s11356-013-1752-4
  18. Antibiofilm Activity of Biosurfactant Producing Coral Associated Bacteria Isolated from Gulf of Mannar vol.54, pp.4, 2010, https://doi.org/10.1007/s12088-014-0474-8
  19. Optimization of Antifungal Lipopeptide Production from Bacillus sp. BH072 by Response Surface Methodology vol.52, pp.4, 2010, https://doi.org/10.1007/s12275-014-3354-3
  20. Cross-Flow Microfiltration ofBacillus SubtilisBroths under Various Culture Times vol.49, pp.6, 2010, https://doi.org/10.1080/01496395.2013.871037
  21. Assessment of the effect of biosurfactant produced byPseudomonas aeruginosain lethality ofBacillus thuringiensisBerl. against 3rd instars larvae of white cabbage butterfly (Pieris brassicaeL.) vol.47, pp.17, 2010, https://doi.org/10.1080/03235408.2013.869889
  22. Substrate dependent in vitro antifungal activity of Bacillus sp strain AR2 vol.13, pp.None, 2010, https://doi.org/10.1186/1475-2859-13-67
  23. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans vol.105, pp.5, 2010, https://doi.org/10.1007/s10482-014-0135-2
  24. Purification and characterization of antimicrobial substances from Bacillus licheniformis BFP011 vol.50, pp.6, 2010, https://doi.org/10.1134/s0003683814110015
  25. Enhanced Transdermal Peptide Delivery and Stability by Lipid Conjugation: Epidermal Permeation, Stereoselectivity and Mechanistic Insights vol.31, pp.12, 2014, https://doi.org/10.1007/s11095-014-1420-5
  26. Synergistic fungicidal activity of the lipopeptide bacillomycin D with amphotericin B against pathogenicCandidaspecies vol.15, pp.4, 2010, https://doi.org/10.1093/femsyr/fov022
  27. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics vol.61, pp.2, 2010, https://doi.org/10.1139/cjm-2014-0613
  28. Characterization of antagonistic‐potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato vol.55, pp.1, 2010, https://doi.org/10.1002/jobm.201300528
  29. Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer vol.5, pp.None, 2010, https://doi.org/10.1038/srep10316
  30. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation vol.16, pp.3, 2010, https://doi.org/10.3390/ijms16034814
  31. Antimicrobial Cyclic Peptides for Plant Disease Control vol.31, pp.1, 2010, https://doi.org/10.5423/ppj.rw.08.2014.0074
  32. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen‐associated molecular pat vol.17, pp.4, 2010, https://doi.org/10.1111/1462-2920.12538
  33. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds vol.31, pp.6, 2010, https://doi.org/10.1007/s11274-015-1847-9
  34. Detection of biosurfactants in Bacillus species: genes and products identification vol.119, pp.4, 2010, https://doi.org/10.1111/jam.12893
  35. Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum vol.55, pp.11, 2015, https://doi.org/10.1002/jobm.201500220
  36. Functional Role of Bacteria from Invasive Phragmites australis in Promotion of Host Growth vol.72, pp.2, 2016, https://doi.org/10.1007/s00248-016-0793-x
  37. Identification and Characterization of Lipopeptides from Bacillus subtilis B1 Against Sapstain Fungus of Rubberwood Through MALDI-TOF-MS and RT-PCR vol.73, pp.1, 2010, https://doi.org/10.1007/s00284-016-1025-9
  38. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone vol.109, pp.10, 2016, https://doi.org/10.1007/s10482-016-0736-z
  39. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani vol.23, pp.7, 2016, https://doi.org/10.1007/s11356-015-5826-3
  40. Inhibitory potential of biosurfactants from Bacillus amyloliquefaciens derived from mangrove soil against Vibrio parahaemolyticus vol.66, pp.3, 2010, https://doi.org/10.1007/s13213-016-1216-4
  41. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms vol.2, pp.None, 2010, https://doi.org/10.1038/npjbiofilms.2015.27
  42. The Antibiosis Action and Rice-Induced Resistance, Mediated by a Lipopeptide from Bacillus amyloliquefaciens B014, in Controlling Rice Disease Caused by Xanthomonas oryzae pv. oryzae vol.26, pp.4, 2010, https://doi.org/10.4014/jmb.1510.10072
  43. Bacillomycin D and its combination with amphotericin B: promising antifungal compounds with powerful antibiofilm activity and wound‐healing potency vol.120, pp.2, 2010, https://doi.org/10.1111/jam.13030
  44. Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae vol.32, pp.3, 2016, https://doi.org/10.5423/ppj.nt.12.2015.0274
  45. Endophytic Bacillus subtilis MJMP2 from Kimchi inhibits Xanthomonas oryzae pv. oryzae, the pathogen of Rice bacterial blight disease vol.59, pp.2, 2016, https://doi.org/10.3839/jabc.2016.027
  46. Lipopeptide production by Bacillus subtilis R1 and its possible applications vol.47, pp.4, 2016, https://doi.org/10.1016/j.bjm.2016.07.006
  47. Identification of a novel endophytic Bacillus sp. from Capsicum annuum with highly efficient and broad spectrum plant probiotic effect vol.121, pp.4, 2016, https://doi.org/10.1111/jam.13214
  48. Study of the correlation between fengycin promoter expression and its production by Bacillus subtilis under different culture conditions and the impact on surfactin production vol.199, pp.10, 2010, https://doi.org/10.1007/s00203-017-1406-x
  49. Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms vol.110, pp.8, 2010, https://doi.org/10.1007/s10482-017-0874-y
  50. Green mitigation strategy for cultural heritage: bacterial potential for biocide production vol.24, pp.5, 2010, https://doi.org/10.1007/s11356-016-8175-y
  51. Isolation and identification of antifungal peptides from Bacillus amyloliquefaciens W10 vol.24, pp.32, 2010, https://doi.org/10.1007/s11356-017-0179-8
  52. Bacillus species as versatile weapons for plant pathogens: a review vol.31, pp.3, 2010, https://doi.org/10.1080/13102818.2017.1286950
  53. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review vol.37, pp.3, 2017, https://doi.org/10.3109/07388551.2016.1163324
  54. Key Impact of an Uncommon Plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 Developmental Traits and Lipopeptide Production vol.8, pp.None, 2010, https://doi.org/10.3389/fmicb.2017.00017
  55. Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides vol.8, pp.None, 2010, https://doi.org/10.3389/fmicb.2017.00061
  56. Antibiosis and bmyB Gene Presence As Prevalent Traits for the Selection of Efficient Bacillus Biocontrol Agents against Crown Gall Disease vol.8, pp.None, 2010, https://doi.org/10.3389/fpls.2017.01363
  57. Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12 vol.8, pp.None, 2010, https://doi.org/10.3389/fpls.2017.02010
  58. Impact of Bacillus cereus NRKT on grape ripe rot disease through resveratrol synthesis in berry skin vol.73, pp.1, 2010, https://doi.org/10.1002/ps.4283
  59. Kinetic study and modeling of biosurfactant production using Bacillus sp. vol.27, pp.None, 2010, https://doi.org/10.1016/j.ejbt.2017.03.005
  60. Complete Genome Sequence of Bacillus subtilis GQJK2, a Plant Growth-Promoting Rhizobacterium with Antifungal Activity vol.5, pp.22, 2010, https://doi.org/10.1128/genomea.00467-17
  61. Properties of Antimicrobial Substances Produced by Bacillus species Isolated from Rice Straw vol.45, pp.2, 2010, https://doi.org/10.4014/mbl.1611.11004
  62. 생물적 방제균 Bacillus amyloliquefaciens LM11의 유래 생물계면활성물질과 항균활성과의 상관관계 vol.23, pp.2, 2010, https://doi.org/10.5423/rpd.2017.23.2.177
  63. Microbial diversity of saline environments: searching for cytotoxic activities vol.7, pp.1, 2010, https://doi.org/10.1186/s13568-017-0527-6
  64. Cyclic lipopeptide signature as fingerprinting for the screening of halotolerant Bacillus strains towards microbial enhanced oil recovery vol.102, pp.3, 2010, https://doi.org/10.1007/s00253-017-8675-9
  65. The antimicrobial and antiadhesion activities of micellar solutions of surfactin, CTAB and CPCl with terpinen-4-ol: applications to control oral pathogens vol.34, pp.6, 2010, https://doi.org/10.1007/s11274-018-2472-1
  66. Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis vol.25, pp.30, 2010, https://doi.org/10.1007/s11356-017-9241-9
  67. Epilithic Biofilms in Lake Baikal: Screening and Diversity of PKS and NRPS Genes in the Genomes of Heterotrophic Bacteria vol.67, pp.4, 2010, https://doi.org/10.21307/pjm-2018-060
  68. Plipastatin A1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74 contributes to the control of gray mold disease in tomato vol.8, pp.2, 2018, https://doi.org/10.1007/s13205-018-1144-z
  69. Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae vol.34, pp.2, 2010, https://doi.org/10.5423/ppj.oa.11.2017.0242
  70. Bacillus velezensis CC09: A Potential ‘Vaccine’ for Controlling Wheat Diseases vol.31, pp.6, 2010, https://doi.org/10.1094/mpmi-09-17-0227-r
  71. In situdownstream strategies for cost-effective bio/surfactant recovery : Strategies for Cost-Effective Bio/Surfactant Recovery vol.65, pp.4, 2018, https://doi.org/10.1002/bab.1641
  72. Bacillus sp. strain M10 as a potential biocontrol agent protecting chili pepper and tomato fruits from anthracnose disease caused by Colletotrichum capsici vol.63, pp.6, 2010, https://doi.org/10.1007/s10526-018-9902-8
  73. Lipopeptides from Bacillus amyloliquefaciens strain 32a as promising biocontrol compounds against the plant pathogen Agrobacterium tumefaciens vol.25, pp.36, 2010, https://doi.org/10.1007/s11356-018-3570-1
  74. Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae vol.41, pp.1, 2010, https://doi.org/10.1080/07060661.2018.1564792
  75. Chemical Compounds Produced by Bacillus sp. Factories and Their Role in Nature vol.19, pp.5, 2010, https://doi.org/10.2174/1389557518666180829113612
  76. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.00302
  77. Antifungal Activities of Bacillus subtilis Lipopeptides to Two Venturia inaequalis Strains Possessing Different Tebuconazole Sensitivity vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.02327
  78. A suite of complementary biocontrol traits allows a native consortium of root‐associated bacteria to protect their host plant from a fungal sudden‐wilt disease vol.28, pp.5, 2010, https://doi.org/10.1111/mec.15012
  79. A New Hope: Self-Assembling Peptides with Antimicrobial Activity vol.11, pp.4, 2010, https://doi.org/10.3390/pharmaceutics11040166
  80. Interrelation of Chemical Composition and Biological Properties of Microbial Surfactants vol.81, pp.3, 2010, https://doi.org/10.15407/microbiolj81.03.084
  81. Capability of iturin from Bacillus subtilis to inhibit Candida albicans in vitro and in vivo vol.103, pp.11, 2010, https://doi.org/10.1007/s00253-019-09805-z
  82. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3 vol.103, pp.13, 2019, https://doi.org/10.1007/s00253-019-09792-1
  83. Molecular Docking and Dynamics Simulation of Protein β-Tubulin and Antifungal Cyclic Lipopeptides vol.24, pp.18, 2010, https://doi.org/10.3390/molecules24183387
  84. The Mode of Action of Bacillus Species against Fusarium graminearum, Tools for Investigation, and Future Prospects vol.11, pp.10, 2010, https://doi.org/10.3390/toxins11100606
  85. Suppression of Sclerotinia sclerotiorum by the Induction of Systemic Resistance and Regulation of Antioxidant Pathways in Tomato Using Fengycin Produced by Bacillus amyloliquefaciens FZB42 vol.9, pp.10, 2010, https://doi.org/10.3390/biom9100613
  86. Inhibitory Abilities of Bacillus Isolates and Their Culture Filtrates against the Gray Mold Caused by Botrytis cinerea on Postharvest Fruit vol.35, pp.5, 2019, https://doi.org/10.5423/ppj.oa.03.2019.0064
  87. A novel antimicrobial protein of the endophytic Bacillus amyloliquefaciens and its control effect against Fusarium chlamydosporum vol.64, pp.6, 2019, https://doi.org/10.1007/s10526-019-09972-y
  88. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens vol.19, pp.None, 2010, https://doi.org/10.1186/s12866-019-1440-8
  89. Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization vol.18, pp.None, 2010, https://doi.org/10.1186/s12934-019-1121-1
  90. Production of antifungal compounds by Bacillus spp. isolates and its capacity for controlling citrus black spot under field conditions vol.36, pp.1, 2010, https://doi.org/10.1007/s11274-019-2772-0
  91. Recovery of Biosurfactant Using Different Extraction Solvent by Rhizospheric Bacteria Isolated from Rice-husk and Poultry Waste Biochar Amended Soil vol.7, pp.1, 2010, https://doi.org/10.1080/2314808x.2020.1797377
  92. Isolation and Characterization of Fengycins Produced by Bacillus amyloliquefaciens JFL21 and Its Broad-Spectrum Antimicrobial Potential Against Multidrug-Resistant Foodborne Pathogens vol.11, pp.None, 2010, https://doi.org/10.3389/fmicb.2020.579621
  93. Transcriptional Profiling of Diffusible Lipopeptides and Fungal Virulence Genes During Bacillus amyloliquefaciens EZ1509-Mediated Suppression of Sclerotinia sclerotiorum vol.110, pp.2, 2020, https://doi.org/10.1094/phyto-05-19-0156-r
  94. Stepwise-Selected Bacillus amyloliquefaciens and B. subtilis Strains from Composted Aromatic Plant Waste Able to Control Soil-Borne Diseases vol.10, pp.2, 2010, https://doi.org/10.3390/agriculture10020030
  95. Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection vol.17, pp.4, 2010, https://doi.org/10.3390/ijerph17041434
  96. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum) vol.51, pp.1, 2010, https://doi.org/10.1007/s42770-019-00172-5
  97. 식물생장촉진근권세균 Bacillus subtilis YGB36을 이용한 고추 탄저병의 생물학적 방제 vol.26, pp.1, 2010, https://doi.org/10.5423/rpd.2020.26.1.8
  98. Bacillomycin D effectively controls growth of Malassezia globosa by disrupting the cell membrane vol.104, pp.8, 2010, https://doi.org/10.1007/s00253-020-10462-w
  99. Biosurfactants Production Using Permeate from Whey Ultrafiltration and Bioproduct Recovery by Membrane Separation Process vol.23, pp.3, 2020, https://doi.org/10.1002/jsde.12399
  100. Screening and Application of Bacillus Strains Isolated from Nonrhizospheric Rice Soil for the Biocontrol of Rice Blast vol.36, pp.3, 2010, https://doi.org/10.5423/ppj.oa.02.2020.0028
  101. Biological control: a sustainable and practical approach for plant disease management vol.70, pp.6, 2010, https://doi.org/10.1080/09064710.2020.1784262
  102. Total Synthesis of Cyclic Lipodepsipeptide Ophiotine vol.56, pp.5, 2010, https://doi.org/10.1007/s10600-020-03175-z
  103. Bacillus subtilis : a universal cell factory for industry, agriculture, biomaterials and medicine vol.19, pp.None, 2010, https://doi.org/10.1186/s12934-020-01436-8
  104. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis vol.19, pp.1, 2010, https://doi.org/10.1186/s12934-020-01468-0
  105. Biosurfactants as a Novel Additive in Pharmaceutical Formulations: Current Trends and Future Implications vol.21, pp.11, 2020, https://doi.org/10.2174/1389200221666201008143238
  106. Two Novel Bacillus Strains (subtilis and simplex Species) with Promising Potential for the Biocontrol of Zymoseptoria tritici, the Causal Agent of Septoria Tritici Blotch of Wheat vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6611657
  107. Profiling of Metabolites of Bacillus spp. and Their Application in Sustainable Plant Growth Promotion and Biocontrol vol.5, pp.None, 2021, https://doi.org/10.3389/fsufs.2021.605195
  108. Isolation and yield optimization of lipopeptides from Bacillus subtilis Z‐14 active against wheat take‐all caused by Gaeumannomyces graminis var. tritici vol.44, pp.4, 2010, https://doi.org/10.1002/jssc.201901274
  109. Optimization of iturin A production from Bacillus subtilis ZK-H2 in submerge fermentation by response surface methodology vol.11, pp.2, 2010, https://doi.org/10.1007/s13205-020-02540-7
  110. Bacillus spp. metabolites are effective in eradicating Aedes aegypti (Diptera: Culicidae) larvae with low toxicity to non-target species vol.179, pp.None, 2010, https://doi.org/10.1016/j.jip.2020.107525
  111. Biocontrole da antracnose em frutos de mamoeiro por bactérias epifíticas formadoras de biofilme vol.47, pp.1, 2010, https://doi.org/10.1590/0100-5405/216998
  112. An Antifungal Chitosanase from Bacillus subtilis SH21 vol.26, pp.7, 2010, https://doi.org/10.3390/molecules26071863
  113. Root Zone Management for Improving Seedling Quality of Organically Produced Horticultural Crops vol.11, pp.4, 2010, https://doi.org/10.3390/agronomy11040630
  114. Gut Bacteria of Rattus rattus (Rat) Produce Broad-Spectrum Antibacterial Lipopeptides vol.6, pp.18, 2010, https://doi.org/10.1021/acsomega.1c01137
  115. Detection of simultaneous production of kurstakin, fengycin and surfactin lipopeptides in Bacillus mojavensis using a novel gel-based method and MALDI-TOF spectrometry vol.37, pp.6, 2010, https://doi.org/10.1007/s11274-021-03064-9
  116. Antagonistic Activity of Bacillus velezensis SDTB038 against Phytophthora infestans in Potato vol.105, pp.6, 2021, https://doi.org/10.1094/pdis-08-20-1666-re
  117. Fengycin A Analogues with Enhanced Chemical Stability and Antifungal Properties vol.23, pp.12, 2010, https://doi.org/10.1021/acs.orglett.1c01387
  118. Comparison of different cultures and culturing conditions for the biological deterioration of organic load from real saline bilge wastewater: microbial diversity insights and ecotoxicity assessment vol.28, pp.27, 2010, https://doi.org/10.1007/s11356-021-13153-9
  119. Bacillus subtilis strain BS06 protects soybean roots from Fusarium oxysporum infection vol.368, pp.15, 2010, https://doi.org/10.1093/femsle/fnab102
  120. Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries vol.10, pp.9, 2010, https://doi.org/10.3390/antiox10091472
  121. A Thermotolerant Marine Bacillus amyloliquefaciens S185 Producing Iturin A5 for Antifungal Activity against Fusarium oxysporum f. sp. cubense vol.19, pp.9, 2010, https://doi.org/10.3390/md19090516
  122. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains vol.10, pp.5, 2010, https://doi.org/10.1002/mbo3.1241
  123. Bacillus amyloliquefaciens-Derived Lipopeptide Biosurfactants Inhibit Biofilm Formation and Expression of Biofilm-Related Genes of Staphylococcus aureus vol.10, pp.10, 2010, https://doi.org/10.3390/antibiotics10101252
  124. Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae vol.41, pp.7, 2010, https://doi.org/10.1080/07388551.2021.1898325
  125. Biological Control of Celery Powdery Mildew Disease Caused by Erysiphe heraclei DC In Vitro and In Vivo Conditions vol.10, pp.11, 2010, https://doi.org/10.3390/plants10112342
  126. Microbial biocontrol agents against chilli plant pathogens over synthetic pesticides: a review vol.87, pp.4, 2010, https://doi.org/10.1007/s43538-021-00053-2
  127. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-020-80231-2
  128. Effects of lipopeptide biosurfactants on clinical strains of Malassezia furfur growth and biofilm formation vol.59, pp.12, 2021, https://doi.org/10.1093/mmy/myab051
  129. Biocontrol of Large Patch Disease in Zoysiagrass (Zoysia japonica) by Bacillus subtilis SA-15: Identification of Active Compounds and Synergism with a Fungicide vol.8, pp.1, 2010, https://doi.org/10.3390/horticulturae8010034