DOI QR코드

DOI QR Code

Enhancement of Clavulanic Acid Production by Expressing Regulatory Genes in gap Gene Deletion Mutant of Streptomyces clavuligerus NRRL3585

  • Jnawali, Hum Nath (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Lee, Hei-Chan (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Sohng, Jae-Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University)
  • Published : 2010.01.31

Abstract

Streptomyces clavuligerus NRRL3585 produces a clinically important $\beta$-lactamase inhibitor, clavulanic acid (CA). In order to increase the production of CA, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene (gap) was deleted in S. clavuligerus NRRL3585 to overcome the limited glyceraldehyde-3-phosphate pool; the replicative and integrative expressions of ccaR (specific regulator of the CA biosynthetic operon) and claR (Lys-type transcriptional activator) genes were transformed together into a deletion mutant to improve clavulanic acid production. We constructed two recombinant plasmids to enhance the production of CA in the gap1 deletion mutant of S. clavuligerus NRRL3585: pHN11 was constructed for overexpression of ccaR-claR, whereas pHN12 was constructed for their chromosomal integration. Both pHN11 and pHN12 transformants enhanced the production of CA by 2.59-fold and 5.85-fold, respectively, compared with the gap1 deletion mutant. For further enhancement of CA, we fed the pHN11 and pHN12 transformants ornithine and glycerol. Compared with the gap1 deletion mutant, ornithine increased CA production by 3.24- and 6.51-fold in the pHN11 and pHN12 transformants, respectively, glycerol increased CA by 2.96- and 6.21-fold, respectively, and ornithine and glycerol together increased CA by 3.72- and 7.02-fold, respectively.

Keywords

References

  1. Alexander, D. C. and S. E. Jensen. 1998. Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein. J. Bacteriol. 180: 4068-4079.
  2. Aoki, H., H. Sakai, M. Kohsaka, T. Konomi, and J. Hosoda. 1976. Nocardicin A, a new monocyclic ${\beta}$-lactam antibiotic. I. Discovery, isolation and characterization. J. Antibiot. 29: 492-500. https://doi.org/10.7164/antibiotics.29.492
  3. Arias, P., M. A. Fernandez-Moreno, and F. Malpartida. 1999. Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J. Bacteriol. 181: 6958-6968.
  4. Baggaley, K. H., A. G. Brown, and C. J. Schofield. 1997. Chemistry and biosynthesis of clavulanic acid and other clavams. Nat. Prod. Rep. 14: 309-333. https://doi.org/10.1039/np9971400309
  5. Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. Nagaraja Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from E. coli to Streptomyces spp. Gene 116: 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
  6. Bird, A. E., J. M. Bellis, and B. C. Gasson. 1982. Spectrophotometric assay of clavulanic acid by reaction with imidazole. Analyst 107: 1241-1245. https://doi.org/10.1039/an9820701241
  7. Elson, S. W. and R. S. Oliver. 1978. Studies on the biosynthesis of clavulanic acid. I. Incorporation of 13C-labeled precursors. J. Antibiot. 31: 586-592. https://doi.org/10.7164/antibiotics.31.586
  8. Garcia-Dominguez, M., J. F. Martin, B. Mahro, A. L. Demain, and P. Liras. 1987. Efficient plasmid transformation of the ${\beta}$-lactam producer Streptomyces clavuligerus. Appl. Environ. Microbiol. 53: 1376-1381.
  9. Gouveia, E. R., A. Baptista-Neto, A. G. Azevedo, A. C. Badino-Jr., and C. O. Hokka. 1999. Improvement of clavulanic acid production by Streptomyces clavuligerus in medium containing soybean derivatives. World J. Microbiol. Biotechnol. 15: 623-627. https://doi.org/10.1023/A:1008942405378
  10. Ives, P. R. and M. E. Bushell. 1997. Manipulation of physiology of clavulanic acid production in Streptomyces clavuligerus. Microbiology 143: 3573-3579. https://doi.org/10.1099/00221287-143-11-3573
  11. Khaleeli, N., R. F. Li, and C. A. Townsend. 1999. Origin of the ${\beta}$-lactam carbons in clavulanic acid from a unusual thiamine pyrophosphate mediated reaction. J. Am. Chem. Soc. 121: 9223-9224. https://doi.org/10.1021/ja9923134
  12. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics, pp. 230-249. John Innes Foundation, Norwich, United Kingdom.
  13. Li, R. and C. A. Townsend. 2006. Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab. Eng. 8: 240-252. https://doi.org/10.1016/j.ymben.2006.01.003
  14. Mayer, A. F. and W. D. Deckwer. 1996. Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations. Appl. Microbiol. Biotechnol. 45: 41-46. https://doi.org/10.1007/s002530050646
  15. Mendz, G. L. and S. L. Hazell. 1996. The urea cycle of Helicobacter pylori. Microbiology 142: 2959-2967. https://doi.org/10.1099/13500872-142-10-2959
  16. Paradkar, A. S., K. A. Aidoo, and S. E. Jensen. 1998. A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Mol. Microbiol. 27: 831-843. https://doi.org/10.1046/j.1365-2958.1998.00731.x
  17. Paradkar, A. S., R. H. Mosher, C. Anders, A. Griffin, J. Griffin, C. Hughes, P. Greaves, B. Barton, and S. E. Jensen. 2001. Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production. Appl. Environ. Microbiol. 67: 2292-2297. https://doi.org/10.1128/AEM.67.5.2292-2297.2001
  18. Perez-Liarena, F. J., P. Liras, A. Rodriguez-Garcia, and J. F. Martin. 1997. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: Amplification results in overproduction of both ${\beta}$-lactam compounds. J. Bacteriol. 179: 2053-2059.
  19. Perez-Redondo, R., A. Rodriguez-Garcia, J. F. Martin, and P. Liras. 1998. The claR gene of Streptomyces clavuligerus, encoding a LysR-type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase (car) gene. Gene 211: 311-321. https://doi.org/10.1016/S0378-1119(98)00106-1
  20. Perez-Redondo, R., A. Rodriguez-Garcia, J. F. Martin, and P. Liras. 1999. Deletion of the pyc gene blocks clavulanic acid biosynthesis except in glycerol-containing medium: Evdience for two different genes in formation of the C3 unit. J. Bacteriol. 181: 6922-6928.
  21. Pruess, D. L. and M. Kellett. 1983. Ro 22-5417, a new clavam antibiotic from Streptomyces clavuligerus. I. Discovery and biological activity. J. Antibiot. 36: 208-212. https://doi.org/10.7164/antibiotics.36.208
  22. Reading, C. and M. Cole. 1977. Clavulanic acid: A beta-lactamase inhibitor from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11: 852-857. https://doi.org/10.1128/AAC.11.5.852
  23. Romero, J., P. Liras, and J. F. Martin. 1984. Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 20: 318-325. https://doi.org/10.1007/BF00270593
  24. Romero, J., P. Liras, and J. F. Martin. 1986. Utilization of ornithine and arginine as specific precursors of clavulanic acid. Appl. Environ. Microbiol. 52: 892-897.
  25. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  26. Santamarta, I., A. Rodriguez-Garcia, R. Perez-Redondo, J. F. Martin, and P. Liras. 2002. CcaR is an autoregulatory protein that binds to the ccaR and cefD-cmcI promoters of the cephamycin C-clavulanic acid cluster in Streptomyces clavuligerus. J. Bacteriol. 84: 3106-3113.
  27. Sthapit, B., T. J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng. 2004. Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206. https://doi.org/10.1016/j.febslet.2004.04.033
  28. Valentine, B. P., A. Bailey, J. Doherty, S. Morris, S. W. Elson, and K. H. Baggaley. 1993. Evidence that arginine is a later metabolic intermediate than ornithine in the biosynthesis of clavulanic acid by Streptomyces clavuligerus. J. Chem. Soc. Chem. Common. 1210-1211.
  29. Ward, J. M. and J. E. Hodgson. 1993. The biosynthetic genes for clavulanic acid and cephamycin production occur as a 'super-cluster' in three Streptomyces. FEMS Microbiol. Lett. 110: 239-242. https://doi.org/10.1111/j.1574-6968.1993.tb06326.x

Cited by

  1. Clavulanic acid biosynthesis and genetic manipulation for its overproduction vol.88, pp.3, 2010, https://doi.org/10.1007/s00253-010-2801-2
  2. Identification and Characterization of a Pantothenate Kinase (PanK-sp) from Streptomyces peucetius ATCC 27952 vol.20, pp.12, 2010, https://doi.org/10.4014/jmb.1007.07058
  3. Genome‐wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus vol.4, pp.2, 2011, https://doi.org/10.1111/j.1751-7915.2010.00226.x
  4. Improvement of clavulanic acid production in Streptomyces clavuligerus by genetic manipulation of structural biosynthesis genes vol.33, pp.6, 2010, https://doi.org/10.1007/s10529-011-0561-4
  5. Enhanced rapamycin production in Streptomyces hygroscopicus by integrative expression of aveR, a LAL family transcriptional regulator vol.27, pp.9, 2010, https://doi.org/10.1007/s11274-011-0673-y
  6. Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement vol.66, pp.7, 2010, https://doi.org/10.1038/ja.2013.26
  7. Coordination of glycerol utilization and clavulanic acid biosynthesis to improve clavulanic acid production in Streptomyces clavuligerus vol.56, pp.7, 2010, https://doi.org/10.1007/s11427-013-4507-z
  8. Herboxidiene biosynthesis, production, and structural modifications: prospect for hybrids with related polyketide vol.99, pp.20, 2015, https://doi.org/10.1007/s00253-015-6860-2
  9. Genetic engineering of an industrial strain of Streptomyces clavuligerusfor further enhancement of clavulanic acid production vol.41, pp.None, 2017, https://doi.org/10.3906/biy-1608-17
  10. The CagRS Two-Component System Regulates Clavulanic Acid Metabolism via Multiple Pathways in Streptomyces clavuligerus F613-1 vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.00244