DOI QR코드

DOI QR Code

ASSOCIATION OF INFRARED DARK CLOUD CORES WITH YSOS: STARLESS OR STARRED IRDC CORES

  • Kim, Gwan-Jeong (International Center for Astrophysics, Korea Astronomy and Space Science Institute) ;
  • Lee, Chang-Won (International Center for Astrophysics, Korea Astronomy and Space Science Institute) ;
  • Kim, Jong-Soo (International Center for Astrophysics, Korea Astronomy and Space Science Institute) ;
  • Lee, Youn-Gung (International Center for Astrophysics, Korea Astronomy and Space Science Institute) ;
  • Ballesteros-Paredes, Javier (Centro De Radioastronomia y Astrofisica, Universidad Nacional Autonoma De Mexico) ;
  • Myers, Philip C. (Harvard-Smithsonian Center for Astrophysics) ;
  • Kurtz, S. (Centro De Radioastronomia y Astrofisica, Universidad Nacional Autonoma De Mexico)
  • 발행 : 2010.02.28

초록

In this paper we examined the association of Infrared Dark Cloud (IRDC) cores with YSOs and the geometric properties of the IRDC cores. For this study a total of 13,650 IRDC cores were collected mainly from the catalogs of the IRDC cores published from other studies and partially from our catalog of IRDC cores containing new 789 IRDC core candidates. The YSO candidates were searched for using the GLIMPSE, MSX, and IRAS point sources by the shape of their SED or using activity of water or methanol maser. The association of the IRDC cores with these YSOs was checked by their line-of-sight coincidence within the dimension of the IRDC core. This work found that a total of 4,110 IRDC cores have YSO candidates while 9,540 IRDC cores have no indication of the existence of YSOs. Considering the 12,200 IRDC cores within the GLIMPSE survey region for which the YSO candidates were determined with better sensitivity, we found that 4,098 IRDC cores (34%) have at least one YSO candidate and 1,072 cores among them seem to have embedded YSOs, while the rest 8,102 (66%) have no YSO candidate. Therefore, the ratio of [N(IRDC core with protostars)]/[N(IRDC core without YSO)] for 12,200 IRDC cores is about 0.13. Taking into account this ratio and typical lifetime of high-mass embedded YSOs, we suggest that the IRDC cores would spend about $10^4\sim10^5$ years to form high-mass stars. However, we should note that the GLIMPSE point sources have a minimum detectable luminosity of about $1.2 L_{\odot}$ at a typical IRDC core's distance of ~4 kpc. Therefore, the ratio given here should be a 100ver limit and the estimated lifetime of starless IRDC cores can be an upper limit. The physical parameters of the IRDC cores somewhat vary depending on how many YSO candidates the IRDC cores contain. The IRDC cores with more YSOs tend to be larger, more elongated, and have better darkness contrast than the IRDC cores with fewer or no YSOs.

키워드

참고문헌

  1. Allen, L., Megeath, S. T., Gutermuth, R., Myers, P. C., Wolk, S., Adams, F. C., Muzerolle, J., Young, E., & Pipher, J. L., 2007, The Structure and Evolution of Young Stellar Clusters, Protostars and Planets V, 361
  2. Bally, J. & Zinnecker, H., 2005, The Birth of High-Mass Stars: Accretion and/or Mergers-, AJ, 129, 2281 https://doi.org/10.1086/429098
  3. Benjamin, R. A., Churchwell, E., Babler, B. L., Bania, T. M., Clemens, D. P., Cohen, M., Dickey, J. M., Indebetouw, R., Jackson, J. M., Kobulnicky, H. A., Lazarian, A., Marston, A. P., Mathis, J. S., Meade, M. R., Seager, S., Stolovy, S. R., Watson, C., Whitney, B. A., Wolff, M. J., & Wolfire, M. G. 2003, GLIMPSE. I. An SIRTF Legacy Project to Map the Inner Galaxy, PASP, 115, 953 https://doi.org/10.1086/376696
  4. Beuther, H., Sridharan, T. K., & Saito, M., 2005, Caught in the Act: The Onset of Massive Star Formation, ApJ, 634, L185 https://doi.org/10.1086/498867
  5. Beuther, H., Churchwell, E. B., McKee, C. F., & Tan, J. C., 2007, The Formation of Massive Stars, Proto-stars and Planets V, 165
  6. Bourke, T. L., Myers, P. C., Evans, II, N. J., Dunham, M. M., Kauffmann, J., Shirley, Y. L., Crapsi, A., Young, C. H., Huard, T. L., Brooke, T. Y., Chapman, N., Cieza, L., Lee, C. W., Teuben, P., & Wahhaj, Z. 2006, The Spitzer c2d Survey of Nearby Dense Cores. II. Discovery of a Low-Luminosity Object in the "Evolved Starless Core" L1521F, ApJ, 649, L37 https://doi.org/10.1086/508161
  7. Carey, S. J., Clark, F. O., Egan, M. P., Price, S. D., Shipman, R. F., & Kuchar, T. A., 1998, The Physical Properties of the Midcourse Space Experiment Galactic Infrared-dark Clouds, ApJ, 508, 721 https://doi.org/10.1086/306438
  8. Carey, S. J., Feldman, P. A., Redman, R. 0., Egan, M. P., MacLeod, J. M., & Price, S. D., 2000, Submillimeter Observations of Midcourse Space Experiment Galactic Infrared-Dark Clouds, ApJ, 543, L157 https://doi.org/10.1086/317270
  9. Churchwell, E., 1990, Ultracompact H II regions - The impact of newly formed massive stars on their environment, A&A Rev., 2, 79 https://doi.org/10.1007/BF00872764
  10. Dunham, M. M., Evans, II, N. J., Bourke, T. L., Dullemond, C. P., Young, C. H., Brooke, T. Y., Chapman, N., Myers, P. C., Porras, A., Spiesman, W., Teuben, P. J., & Wahhaj, Z., 2006, The Spitzer c2d Survey of Nearby Dense Cores. I. First Direct Detection of the Embedded Source in IRAM 04191+1522, ApJ, 651, 945 https://doi.org/10.1086/508051
  11. Dunham, M. M., Crapsi, A., Evans, N. J., II, Bourke, T. L., Huard, T. L., Myers, P. C., & Kauffmann, J., 2008, Identifying the Low-Luminosity Population of Embedded Protostars in the c2d Observations of Clouds and Cores, ApJS, 179, 249 https://doi.org/10.1086/591085
  12. Egan, M. P., Shipman, R. F., Price, S. D., Carey, S. J., Clark, F. O., & Cohen, M., 1998, A Population of Cold Cores in the Galactic Plane, ApJ, 494, L199 https://doi.org/10.1086/311198
  13. Egan, M. P., Price, S. D., Shipman, R. F., Gugliotti, G. M., Tedesco, E. F., Moshir, M., & Cohen, M., 1999, The MSX Infrared Point Source Catalog, Version 1. 0, ASPC , 177, 404
  14. Evans, II, N. J., Allen, L. E., Blake, G. A., Boogert, A. C. A., Bourke, T., Harvey, P. M., Kessler, J. E., Koerner, D. W., Lee, C. W., Mundy, L. G., Myers, P. C., Padgett, D. L., Pontoppidan, K., Sargent, A. I., Stapelfeldt, K. R., van Dishoeck, E. F., Young, C. H., & Young, K. E., 2003, From Molecular Cores to Planet-forming Disks: An SIRTF Legacy Program, PASP, 115, 965 https://doi.org/10.1086/376697
  15. Fazio, G. G., Hora, J. L. and Allen, L. E., Ashby, M. L. N., Barmby, P., Deutsch, L. K., Huang, J.-S., Kleiner, S., Marengo, M., Megeath, S. T., Melnick, G. J., Pahre, M. A., Patten, B. M., Polizotti, J., Smith, H. A., Taylor, R. S., Wang, Z., Willner, S. P., Hoffmann, W. F., Pipher, J. L., Forrest, W. J., McMurty, C. W., McCreight, C. R., McKelvey, M. E., McMurray, R. E., Koch, D. G., Moseley, S. H., Arendt, R. G., Mentzell, J. E., Marx, C. T., Losch, P., Mayman, P., Eichhorn, W., Krebs, D., Jhabvala, M., Gezari, D. Y., Fixsen, D. J., Flores, J., Shakoorzadeh, K., Jungo, R., Hakun, C., Workman, L., Karpati, G., Kichak, R., Whitley, R., Mann, S., Tollestrup, E. V., Eisenhardt, P., Stern, D., Gorjian, V., Bhattacharya, B., Carey, S., Nelson, B. 0., Glaccum, W. J., Lacy, M., Lowrance, P. J., Laine, S., Reach, W. T., Stauffer, J. A., Surace, J. A., Wilson, G., Wright, E. L., Hoffman, A., Domingo, G. & Cohen, M., 2004, The Infrared Array Camera (IRAC) for the Spitzer Space Telescope, ApJS, 154, 10 https://doi.org/10.1086/422843
  16. Fiege, J. D., Johnstone, D., Redman, R. O., & Feldman, P. A., 2004, A Genetic Algorithm-based Exploration of Three Filament Models: A Case for the Magnetic Support of the G11.11-0.12 Infrared-dark Cloud, ApJ, 616, 925 https://doi.org/10.1086/424956
  17. Greene, T. P., Wilking, B. A., Andre, P., Young, E. T., & Lada, C. J., 1994, Further mid-infrared study of the rho Ophiuchi cloud young stellar population: Luminosities and masses of pre-main-sequence stars, ApJ, 434, 614 https://doi.org/10.1086/174763
  18. Garay, G., Faundez, S., Mardones, D., Bronfman, L., Chini, R., & Nyman, L.-A. 2004, Discovery of Four New Massive and Dense Cold Cores, ApJ, 610, 313 https://doi.org/10.1086/421437
  19. Hennebelle, P., Perault, M., Teyssier, D., & Ganesh, S., 2001, Infrared dark clouds from the ISOGAL survey. Constraints on the interstellar extinction curve, A&A, 365, 598 https://doi.org/10.1051/0004-6361:20000052
  20. Jackson, J. M., Rathborne, J. M., Shah, R. Y., Simon, R., Bania, T. M., Clemens, D. P., Chambers, E. T., Johnson, A. M., Dormody, M., Lavoie, R., & Heyer, M. H., 2006, The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey, ApJS, 163, 145 https://doi.org/10.1086/500091
  21. Lee, C. W. & Myers, P. C., 1999, A Catalog of Optically Selected Cores, ApJS, 123, 233 https://doi.org/10.1086/313234
  22. Lee, C. W., Bourke, T. L., Myers, P. C., Dunham, M., Evans, N., Lee, Y., Huard, T., Wu, J., Gutermuth, R., Kim, M.-R., & Kang, H. W., 2009, The Spitzer c2d Survey of Nearby Dense Cores. V. Discovery of a VeLLO in the "Starless" Dense Core L328, ApJ, 693, 1290 https://doi.org/10.1088/0004-637X/693/2/1290
  23. Motte, F., Bontemps, S., Schilke, P., Schneider, N., Menten, K. M., & Broguiere, D., 2007, The earliest phases of high-mass star formation: a 3 square degree millimeter continuum mapping of Cygnus X, A&A, 476, 1243 https://doi.org/10.1051/0004-6361:20077843
  24. Myers, P. C., Fuller, G. A., Mathieu, R. D., Beichman, C. A., Benson, P. J., Schild, R. E., & Emerson, J. P., 1987, Near-infrared and optical observations of IRAS sources in and near dense cores, ApJ, 319, 340 https://doi.org/10.1086/165458
  25. Norberg, P. & Maeder, A., 2000, On the formation of massive stars by accretion, A&A, 359, 1025
  26. Ormel, C. W., Shipman, R. F., Ossenkopf, V., & Helmich, F. P., 2005, The modelling of infrared dark cloud cores, A&A, 439, 613 https://doi.org/10.1051/0004-6361:20042379
  27. Parsons, H., Thompson, M. A., & Chrysostomou, A., 2009, Infrared dark cloud cores in the SCUBA Legacy Catalogue, MNRAS, 399, 1506 https://doi.org/10.1111/j.1365-2966.2009.15375.x
  28. Perault, M., Omont, A., Simon, G., Seguin, P., Ojha, D., Blommaert, J., Felli, M., Gilmore, G., Guglielmo, F., Habing, H., Price, S., Robin, A., de Batz, B., Cesarsky, C., Elbaz, D., Epchtein, N., Fouque, P., Guest, S., Levine, D., Pollock, A., Prusti, T., Siebenmorgen, R., Testi, L. & Tiphene, D., 1996, First ISOCAM images of the Milky Way, A&A, 315, L165
  29. Peretto, N. & Fuller, G. A., 2009, The initial conditions of stellar protocluster formation. I. A catalogue of Spitzer dark clouds, A&A, 505, 405 https://doi.org/10.1051/0004-6361/200912127
  30. Pestalozzi, M. R. & Minier, V., 2003, General Catalogue of 6.7GHz Methanol Masers (Pestalozzi+, 2005), VizieR Online Data Catalog, 343, 20737
  31. Pestalozzi, M. R., 2007, Methanol masers as tools to study high-mass star formation, lAU Symposium, 242, 89
  32. Pillai, T., Wyrowski, F., Carey, S. J., & Menten, K. M., 2006, Ammonia in infrared dark clouds, A&A, 450, 569 https://doi.org/10.1051/0004-6361:20054128
  33. Price, S. D., 1995, Infrared Astronomy on the Midcourse Space Experiment, Space Science Reviews, 74, 81 https://doi.org/10.1007/BF00751255
  34. Ragan, S. E., Bergin, E. A., Plume, R., Gibson, D. L., Wilner, D. J., O'Brien, S., & Hails, E., 2006, Molecular Line Observations of Infrared Dark Clouds: Seeking the Precursors to Intermediate and Massive Star Formation, ApJS, 166, 567 https://doi.org/10.1086/506594
  35. Rathborne, J. M., Jackson, J. M., Chambers, E. T., Simon, R., Shipman, R., & Frieswijk, W., 2005, Massive Protostars in the Infrared Dark Cloud MSXDC G034.43+00.24, ApJ, 630, L181 https://doi.org/10.1086/491656
  36. Rathborne, J. M., Jackson, J. M., & Simon, R., 2006, Infrared Dark Clouds: Precursors to Star Clusters, ApJ, 641,389 https://doi.org/10.1086/500423
  37. Rathborne, J. M., Simon, R., & Jackson, J. M., 2007, The Detection of Protostellar Condensations in Infrared Dark Cloud Cores, ApJ, 662, 1082 https://doi.org/10.1086/513178
  38. Rathborne, J. M., Jackson, J. M., Zhang, Q., & Simon, R., 2008, Submillimeter Array Observations of Infrared Dark Clouds: A Tale of Two Cores, ApJ, 689, 1141 https://doi.org/10.1086/592733
  39. Redman, R. O., Feldman, P. A., Wyrowski, F., Cote, S., Carey, S. J., & Egan, M. P., 2003, Interactions between a Bright Young Stellar Object and the Midcourse Space Experiment Infrared-dark Cloud G79.3+0.3: An Early Stage of Triggered Star Formation-, ApJ, 586, 1127 https://doi.org/10.1086/367823
  40. Shu, F. H., Adams, F. C., & Lizano, S., 1987, Star formation in molecular clouds - Observation and theory, ARA&A, 25, 23 https://doi.org/10.1146/annurev.aa.25.090187.000323
  41. Simon, R., Jackson, J. M., Rathborne, J. M., & Chambers, E. T., 2006a, A Catalog of Midcourse Space Experiment Infrared Dark Cloud Candidates, ApJ, 639, 227 https://doi.org/10.1086/499342
  42. Simon, R., Rathborne, J. M., Shah, R. Y., Jackson, J. M., & Chambers, E. T., 2006b, The Characterization and Galactic Distribution of Infrared Dark Clouds, ApJ, 653, 1325 https://doi.org/10.1086/508915
  43. Sridharan, T. K., Beuther, H., Schilke, P., Menten, K. M., & Wyrowski, F., 2002, High-Mass Protostellar Candidates. I. The Sample and Initial Results, ApJ, 566, 931 https://doi.org/10.1086/338332
  44. Sridharan, T. K., Beuther, H., Saito, M., Wyrowski, F., & Schilke, P., 2005, High-Mass Starless Cores, ApJ, 634, L57 https://doi.org/10.1086/498644
  45. Teyssier, D., Hennebelle, P., & Perault, M., 2002, Radio-millimetre investigation of galactic infrared dark clouds, A&A, 382, 624 https://doi.org/10.1051/0004-6361:20011646
  46. Valdettaro, R., Palla, F., Brand, J., Cesaroni, R., Comoretto, G., di, F. S., Felli, M., Natale, E., Palagi, F., Panella, D., & Tofani, G., 2001, Arcetri Catalog of H2O maser sources. Update. (Valdettaro+, 2001), VizieR Online Data Catalog, 336, 80845
  47. Van der Walt, J., 2005, On the number and lifetime of 6.7-GHz methanol masers, MNRAS, 360, 153 https://doi.org/10.1111/j.1365-2966.2005.09026.x
  48. Wang, Y., Zhang, Q., Rathborne, J. M., Jackson, J., & Wu, Y., 2006, Water Masers Associated with Infrared Dark Cloud Cores, ApJ, 651, L125 https://doi.org/10.1086/508939
  49. Weintraub, D. A., 1990, A catalog of pre- main-sequence emission-line stars with IRAS source associations, ApJS, 74, 575 https://doi.org/10.1086/191509
  50. Wood D. O. S. & Churchwell E., 1989a, Massive stars embedded in molecular clouds - Their population and distribution in the galaxy, ApJ, 340, 265 https://doi.org/10.1086/167390
  51. Wood D. O. S. & Churchwell E., 1989b, The morphologies and physical properties of ultracompact H II regions, ApJS, 69, 831 https://doi.org/10.1086/191329
  52. Young, C. H., Jorgensen, J. K., Shirley, Y. L., Kauffmann, J., Huard, T., Lai, S.-P., Lee, C. W., Crapsi, A., Bourke, T. L., Dullemond, C. P., Brooke, T. Y., Porras, A., Spiesman, W., Allen, L. E., Blake, G. A., Evans,III, N. J., Harvey, P. M., Koerner, D. W., Mundy, L. G., Myers, P. C., Padgett, D. L., Sargent, A. I., Stapelfeldt, K. R., van Dishoeck, E. F., Bertoldi, F., Chapman, N., Cieza, L., DeVries, C. H., Ridge, N. A., & Wahhaj, Z. 2004, A "Starless" Core that Isn't: Detection of a Source in the L1014 Dense Core with the Spitzer Space Telescope, ApJS, 154, 396Āꡈ窙倀಄㿨ʻ騿Ȁ惘?⨀฀考憺Ȁ憺Ȁ̀￿￿𺦖⨀惘?⨀鄎돀⢝?⨀堘?⨀ズ?⨀椎돐傺?⨀??⨀墺?⨀䄎덐梺?⨀䀎‎歳来礱〰ㄴ䝇升䉏䔱䭈䈰弲〰㍟瘳ㅮㅟㄹ㌀睩灳礱〰ㄷ睩灳礱〰㈵睩灳礱〰㌳睩灳礱〰㌸睩灳礱〰㌹睩灳礱〰㐲睩灳礱〰㐵睩灳礱〰㐶睩灳礱〰㔰睩灳礱〰㔳멡Μ꥙睩灳礱〰㔴睩灳礱〰㔵睩灳礱〰㔶睩灳礱〰㔷멦Ξ鞱睩灳礱〰㔹睩灳礱〰멛΍硶䝇升䉏瘴の㈱〰㘱睩灳礱〰㘲睩灳礱〰㘴睩灳礱〰㘵睩灳礱〰㜳睩灳礱〰㤷 https://doi.org/10.1086/422818

피인용 문헌

  1. DISTINCT CHEMICAL REGIONS IN THE “PRESTELLAR” INFRARED DARK CLOUD G028.23–00.19 vol.773, pp.2, 2013, https://doi.org/10.1088/0004-637X/773/2/123
  2. A Massive Prestellar Clump Hosting No High-mass Cores vol.841, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa6ff8
  3. CHEMISTRY IN INFRARED DARK CLOUD CLUMPS: A MOLECULAR LINE SURVEY AT 3 mm vol.756, pp.1, 2012, https://doi.org/10.1088/0004-637X/756/1/60
  4. Formaldehyde and H110α observations towards 6.7 GHz methanol maser sources vol.350, pp.2, 2014, https://doi.org/10.1007/s10509-014-1779-0