• Title/Summary/Keyword: infrared: ISM

Search Result 73, Processing Time 0.021 seconds

PROCESSING OF INTERSTELLAR MEDIUM AS DIVULGED BY AKARI

  • Onaka, Takashi;Mori, Tamami I.;Ohsawa, Ryou;Sakon, Itsuki;Bell, Aaron C.;Hammonds, Mark;Shimonishi, Takashi;Ishihara, Daisuke;Kaneda, Hidehiro;Okada, Yoko;Tanaka, Masahiro
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.77-81
    • /
    • 2017
  • A wide spectral coverage from near-infrared (NIR) to far-infrared (FIR) of AKARI both for imaging and spectroscopy enables us to efficiently study the emission from gas and dust in the interstellar medium (ISM). In particular, the Infrared Camera (IRC) onboard AKARI offers a unique opportunity to carry out sensitive spectroscopy in the NIR ($2-5{\mu}m$) for the first time from a spaceborn telescope. This spectral range contains a number of important dust bands and gas lines, such as the aromatic and aliphatic emission bands at 3.3 and $3.4-3.5{\mu}m$, $H_2O$ and $CO_2$ ices at 3.0 and $4.3{\mu}m$, CO, $H_2$, and H I gas emission lines. In this paper we concentrate on the aromatic and aliphatic emission and ice absorption features. The balance between dust supply and destruction suggests significant dust processing taking place as well as dust formation in the ISM. Detailed analysis of the aromatic and aliphatic bands of AKARI observations for a number of H ii regions and H ii region-like objects suggests processing of carbonaceous dust in the ISM. The ice formation process can also be studied with IRC NIR spectroscopy efficiently. In this review, dust processing in the ISM divulged by recent analysis of AKARI data is discussed.

AKARI OBSERVATIONS OF THE INTERSTELLAR MEDIUM

  • Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.187-193
    • /
    • 2012
  • AKARI has 4 imaging bands in the far-infrared (FIR) and 9 imaging bands that cover the near-infrared (NIR) to mid-infrared (MIR) contiguously. The FIR bands probe the thermal emission from sub-micron dust grains, while the MIR bands observe emission from stochastically-heated very small grains and the unidentified infrared (UIR) band emissions from carbonaceous materials that contain aromatic and aliphatic bonds. The multi-band characteristics of the AKARI instruments are quite efficient to study the spectral energy distribution of the interstellar medium, which always shows multi-component nature, as well as its variations in the various environments. AKARI also has spectroscopic capabilities. In particular, one of the onboard instruments, Infrared Camera (IRC), can obtain a continuous spectrum from 2.5 to $13{\mu}m$ with the same slit. This allows us to make a comparative study of the UIR bands in the diffuse emission from the 3.3 to $11.3{\mu}m$ for the first time. The IRC explores high-sensitivity spectroscopy in the NIR, which enables the study of interstellar ices and the UIR band emission at $3.3-3.5{\mu}m$ in various objects. Particularly, the UIR bands in this spectral range contain unique information on the aromatic and aliphatic bonds in the band carriers. This presentation reviews the results of AKARI observations of the interstellar medium with an emphasis on the observations of the NIR spectroscopy.

FAR-INFRARED [C II] EMISSION FROM THE CENTRAL REGIONS OF SPIRAL GALAXIES

  • MOCHIZUKI KENJI
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.193-197
    • /
    • 2004
  • Anomalies in the far-infrared [C II] 158 ${\mu}m$ line emission observed in the central one-kiloparsec regions of spiral galaxies are reviewed. Low far-infrared intensity ratios of the [C II] line to the continuum were observed in the center of the Milky Way, because the heating ratio of the gas to the dust is reduced by the soft interstellar radiation field due to late-type stars in the Galactic bulge. In contrast, such low line-to-continuum ratios were not obtained in the center of the nearby spiral M31, in spite of its bright bulge. A comparison with numerical simulations showed that a typical column density of the neutral interstellar medium between illuminating sources at $hv {\~} 1 eV $ is $N_H {\le}10^{21}\;cm^{-2}$ in the region; the medium is translucent for photons sufficiently energetic to heat the grains but not sufficiently energetic to heat the gas. This interpretation is consistent with the combination of the extremely high [C Il]/CO J = 1-0 line intensity ratios and the low recent star-forming activity in the region; the neutral interstellar medium is not sufficiently opaque to protect the species even against the moderately intense incident UV radiation. The above results were unexpected from classical views of the [C II] emission, which was generally considered to trace intense interstellar UV radiation enhanced by active star formation.

SUPERNOVA REMNANTS IN THE AKARI FIS ALL-SKY SURVEY

  • Jeong, Il-Gyo;Koo, Bon-Chul;Lee, Ho-Gyu
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.235-236
    • /
    • 2012
  • We carry out a systematic study of Galactic supernova remnants (SNRs) using the AKARI Far Infrared Surveyor (FIS) survey data. The AKARI Infrared Astronomical Satellite observed the whole sky using the four FIS bands covering 50 to 180 microns with ~1 arcmin resolution. The all-sky coverage with high-spatial resolution provides an unprecedented opportunity to study diffuse, extended far-infrared (FIR) sources such as SNRs. We have searched for FIR counterparts to all 274 known Galactic SNRs, and investigate their FIR properties of identified SNRs. We report preliminary results of the study.

INFRARED SUPERNOVA REMNANTS IN THE LARGE MAGELLANIC CLOUD

  • Seok, J.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.231-234
    • /
    • 2012
  • We present preliminary results of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) seen by AKARI as well as Spitzer. By examining the AKARI LMC survey and the Spitzer data, we have searched for IR counterparts to 45 known SNRs in the LMC and could identify 28 SNRs with associated IR emission. 13 SNRs among them are newly detected in IR bands. For the entire IR SNRs, we make a catalog containing general information and the AKARI and/or Spitzer fluxes. Using the catalog, their IR colors and the possible correlation of the IR fluxes with the X-ray fluxes are examined. For some interesting SNRs, we have performed NIR spectroscopy with AKARI. An aromatic feature at $3.3{\mu}m$ can be identified in LMC SNR N49. We investigate the characteristics of the IR features and discuss the PAH mission mechanism in SNRs.

FOREGROUND OF GAMMA-RAY BURSTS (GRBS) FROM AKARI FIS DATA

  • Toth, L. Viktor;Doi, Yasuo;Zahorecz, Sarolta;Agas, Marton;Balazs, Lajos G.;Forro, Adrienn;Racz, Istvan I.
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.113-116
    • /
    • 2017
  • A significant number of the parameters of a gamma-ray burst (GRB) and its host galaxy are calculated from the afterglow. There are various methods obtaining extinction values for the necessary correction for galactic foreground. These are: galaxy counts, from HI 21 cm surveys, from spectroscopic measurements and colors of nearby Galactic stars, or using extinction maps calculated from infrared surveys towards the GRB. We demonstrate that AKARI Far-Infrared Surveyor sky surface brightness maps are useful uncovering the fine structure of the galactic foreground of GRBs. Galactic cirrus structures of a number of GRBs are calculated with a 2 arcminute resolution, and the results are compared to that of other methods.

SPECTRAL EVOLUTION OF NOVAE IN THE NEAR-INFRARED BASED ON AKARI OBSERVATIONS

  • Sakon, Itsuki;Onaka, Takashi;Usui, Fumihiko;Shimamoto, Sayaka;Ohsawa, Ryou;Wada, Takehiko;Matsuhara, Hideo;Arai, Akira
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.101-103
    • /
    • 2017
  • We have carried out the near-infrared spectroscopic observations of recent classical novae (e.g., V2468Cyg, V1280Sco) within a few years from the outburst with AKARI as a part of AKARI Open Time Observing Program for Phase 3-II "Spectral Evolution of Novae in the Near-Infrared based on AKARI Observations (Proposal ID: SENNA)". The homogeneous datasets of near-infrared spectra from $2.5{\mu}m$ to $5{\mu}m$ with AKARI/IRC collected in this program are useful to infer the physical conditions of the shell formed by the ejected materials, to examine the chemical properties of the ejecta gas, and to examine the properties of dust formed in the nova ejecta.

AKARI AND SPINNING DUST: INVESTIGATING THE NATURE OF ANOMALOUS MICROWAVE EMISSION VIA INFRARED SURVEYS

  • Bell, Aaron C.;Onaka, Takashi;Doi, Yasuo;Sakon, Itsuki;Usui, Fumihiko;Sakon, Itsuki;Ishihara, Daisuke;Kaneda, Hidehiro;Giard, Martin;Wu, Ronin;Ohsawa, Ryou;Mori-Ito, Tamami;Hammonds, Mark;Lee, Ho-Gyu
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.97-99
    • /
    • 2017
  • Our understanding of dust emission, interaction, and evolution, is evolving. In recent years, electric dipole emission by spinning dust has been suggested to explain the anomalous microwave excess (AME), appearing between 10 and 90 Ghz. The observed frequencies suggest that spinning grains should be on the order of 10nm in size, hinting at polycyclic aromatic hydrocarbon molecules (PAHs). We present data from the AKARI/Infrared Camera (IRC) due to its high sensitivity to the PAH bands. By inspecting the IRC data for a few AME regions, we find a preliminary indication that regions well-fitted by a spinning-dust model have a higher $9{\mu}m$ than $18{\mu}m$ intensity vs. non-spinning-dust regions. Ongoing efforts to improve the analysis by using DustEM and including data from the AKARI Far Infrared Surveyor (FIS), IRAS, and Planck High Frequency Instrument (HFI) are described.

AKARI FAR-INFRARED ALL-SKY SURVEY MAPS

  • Doi, Yasuo;Komugi, Shinya;Kawada, Mitsunobu;Takita, Satoshi;Arimatsu, Ko;Ikeda, Norio;Kato, Daisuke;Kitamura, Yoshimi;Nakagawa, Takao;Ootsubo, Takafumi;Morishima, Takahiro;Hattori, Makoto;Tanaka, Masahiro;White, Glenn J.;Etxaluze, Mireya;Shibai, Hiroshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.111-116
    • /
    • 2012
  • Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~ 100 and $200{\mu}m$. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range $50-180{\mu}m$. Covering > 99% of the sky in four photometric bands with four filters centred at $65{\mu}m$, $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of < 10 MJy $sr^{-1}$, with absolute and relative photometric accuracies of < 20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.

THE PROPERTIES OF DUST EMISSION IN THE GALACTIC CENTER REGION REVEALED BY FIS-FTS OBSERVATIONS

  • Yasuda, A.;Kaneda, H.;Takahashi, A.;Nakagawa, T.;Kawada, M.;Okada, Y.;Takahashi, H.;Murakami, N.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.221-222
    • /
    • 2012
  • We present the results of far-infrared spectral mapping of the Galactic center region with FIS-FTS, which covered the two massive star-forming clusters, Arches and Quintuplet. We find that two dust components with temperatures of about 20 K and 50 K are required to fit the overall continuum spectra. The warm dust emission is spatially correlated with the [OIII] $88{\mu}m$ emission and both are likely to be associated with the two clusters, while the cool dust emission is more widely distributed without any clear spatial correlation with the clusters. We find differences in the properties of the ISM around the two clusters, suggesting that the star-forming activity of the Arches cluster is at an earlier stage than that of the Quintuplet cluster.