DOI QR코드

DOI QR Code

Effects of Precursor Concentration on Surface and Optical Properties of ZnO Nano-Fibrous Thin Films Fabricated by Spin-Coating Method

스핀코팅 방법으로 제작된 ZnO 나노 섬유질 박막의 전구체 농도에 따른 표면 및 광학적 특성

  • Kim, Min-Su (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Ghun-Sik (Department of Nano Systems Engineering, Inje University) ;
  • Yim, Kwang-Gug (Department of Nano Systems Engineering, Inje University) ;
  • Cho, Min-Young (Department of Nano Systems Engineering, Inje University) ;
  • Jeon, Su-Min (Department of Nano Systems Engineering, Inje University) ;
  • Choi, Hyun-Young (Department of Nano Systems Engineering, Inje University) ;
  • Lee, Dong-Yul (Epi-manufacturing Technology, Samsung LED Co. Ltd.) ;
  • Kim, Jin-Soo (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Kim, Jong-Su (Department of Physics, Yeungnam University) ;
  • Lee, Joo-In (Advanced Instrument Technology Center, Korea Research Institute of Standards and Science) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Inje University)
  • 김민수 (인제대학교 나노시스템공학과) ;
  • 김군식 (인제대학교 나노시스템공학과) ;
  • 임광국 (인제대학교 나노시스템공학과) ;
  • 조민영 (인제대학교 나노시스템공학과) ;
  • 전수민 (인제대학교 나노시스템공학과) ;
  • 최현영 (인제대학교 나노시스템공학과) ;
  • 이동율 (삼성 LED Epi-manufacturing Technology) ;
  • 김진수 (전북대학교 신소재공학부) ;
  • 김종수 (영남대학교 물리학과) ;
  • 이주인 (한국표준과학연구원 첨단장비기술센터) ;
  • 임재영 (인제대학교 나노시스템공학과)
  • Received : 2010.08.11
  • Accepted : 2010.11.04
  • Published : 2010.11.30

Abstract

ZnO nano-fibrous thin films with various precursor concentrations ranging from 0.2 to 1.0 mol (M) were grown by spin-coating method and effects of the precursor concentration on surface and optical properties of the ZnO nano-ribrous thin films were investigated by using scanning electron microscopy (SEM) and photoluminescence (PL). ZnO nuclei were formed at the precursor concentration below 0.4 M and the ZnO nano-fibrous thin films were grown at the precursor concentration above 0.6 M. Further increase in the precursor concentration, the thickness of the ZnO nano-fibrous thin films is gradually increased. The intensity and the full-width at half-maximum (FWHM) of the near-band-edge emission (NBE) is increased as the precursor concentration is increased. The deep-level emission (DLE) is red-shifted as the precursor concentration is increased.

스핀코팅 방법을 이용하여 다양한 농도의 전구체로 ZnO 나노 섬유질 박막(ZnO nano-fibrous thin films)을 성장하였고, 그에 따른 표면 및 광학적 특성 변화를 scanning electron microscopy (SEM)와 photoluminescence (PL)을 이용하여 측정하였다. 전구체 농도가 0.4 mol (M) 이하 일 때는 성장률이 낮아 ZnO 핵생성만이 되었고, 0.6 M 이상일 때 ZnO 박막은 나노섬유질 구조가 되었다. 전구체 농도가 더욱 증가함에 따라 ZnO 나노 섬유질의 굵기가 굵어졌고 ZnO 박막의 두께도 단계적으로 두꺼워졌다. 전구체 농도가 증가함에 따라 ZnO 나노 섬유질 박막의 photoluminescence (PL)의 근밴드가장자리 광방출(near-band-edge emission) 피크 세기와 full-width at half-maximu (FWHM)이 증가하였고, 깊은 준위 광방출(deep-level mission) 피크는 적색편이(red-shift)하였다.

Keywords

References

  1. C. Yuen, S. F. Yu, S. P. Lau, and G. C. K. Chen, J. Cryst. Growth 287, 204 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.068
  2. Q. Wang, Y. Qin, G. J. Xu, L. Chen, Y. Li, L. Duan, Z. X. Li, Y. L. Li, and P. Cui, Ceramics International 34, 1697 (2008). https://doi.org/10.1016/j.ceramint.2007.05.012
  3. E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, Thin Solid Films 487, 205 (2005). https://doi.org/10.1016/j.tsf.2005.01.066
  4. J. B. Lee, H. J. Lee, S. H. Seo, and J. S. Park, Thin Solid Films 398, 641 (2001). https://doi.org/10.1016/S0040-6090(01)01332-3
  5. I. T. Tang, H. J. Ched, W. C. Hwang, Y. C. Wang, M. P. Houng, Y. C. Wang, M. P. Houng, and Y. H. Wang J. Cryst. Growth 262, 461 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.081
  6. P. Bhattacharyya, P. K. Basu, H. Saha, and S. Basu, Sensors and Actuators B 124, 62 (2007). https://doi.org/10.1016/j.snb.2006.11.046
  7. N. O. V. Plank, M. E. Welland, J. L. MacManus- Driscoll, and L. Schmidt-Mende, Thin Solid Films 516, 7218 (2008). https://doi.org/10.1016/j.tsf.2007.12.037
  8. M. S. Kim, T. H. Kim, D. Y. Kim, G. S. Kim, H. Y. Choi, M. Y. Cho, S. M. Jeon, J. S. Kim, J. S. Kim, D. Y. Lee, J. S. Son, J. I. Lee, J. H. Kim, E. Kim, D. W. Hwang, and J. Y. Leem, J. Crystal Growth 311, 3568 (2009). https://doi.org/10.1016/j.jcrysgro.2009.05.010
  9. S. Roy and S. Basu, Bull. Mater. Sci. 25, 513 (2002). https://doi.org/10.1007/BF02710540
  10. K. B. Sundaram and A. Khan, Thin Solid Films 295, 87 (1997). https://doi.org/10.1016/S0040-6090(96)09274-7
  11. Y. H. Kim and S. I. Kim, J. Korean Vacuum Soc. 18, 358 (2009). https://doi.org/10.5757/JKVS.2009.18.5.358
  12. H. S. Kim, J. Korean Vacuum Soc. 18, 384 (2009). https://doi.org/10.5757/JKVS.2009.18.5.384
  13. K. R. Murali, J. Phys. Chem. Solids 68, 2293 (2007). https://doi.org/10.1016/j.jpcs.2007.06.006
  14. P. P. Sahay, S. Tewari, and R. K. Nath, Cryst. Res. Technol. 42, 723 (2007). https://doi.org/10.1002/crat.200610895
  15. S. Ilican, Y. Caglar, and M. Caglar, J. Optorlrctron. Adv. M. 10, 2578 (2008).
  16. K. G. Yim, M. S. Kim, G. S. Kim, H. Y. Choi, S. M. Jeon, M. Y. Cho, Y. G. Kim, D. Y. Lee, J. S. Kim, J. S. Kim, J. I. Lee, and J. Y. Leem, J. Korean Vacuum Soc. 19, 281 (2010). https://doi.org/10.5757/JKVS.2010.19.4.281
  17. J. Zhao, Z. G. Jin, T. Li, and X. X. Liu, J. Eur. Ceram. Soc. 26, 2769 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.07.062
  18. U. N. Maiti, P. K. Ghosh, S. Nandy, and K. K. Chattopadhyay, Physica B 387, 103 (2007). https://doi.org/10.1016/j.physb.2006.03.090
  19. L. Bie, X. Yan, J. Yin, Y. Duan, and Z. Yuan, Sens. Actuators B 126, 604 (2007). https://doi.org/10.1016/j.snb.2007.04.011
  20. J. B. Lee, M. H. Lee, C. K. Park, and J. S. Park, Thin Solid Films 447-448, 296 (2004). https://doi.org/10.1016/S0040-6090(03)01067-8
  21. M. K. Gupta, N. Sinha, B. K. Singh, and B. Kumar, Mater. Lett. 64, 1825 (2010). https://doi.org/10.1016/j.matlet.2010.05.044
  22. S. A. Studeninkin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998). https://doi.org/10.1063/1.368295
  23. M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee, and C. H. Park, Phys. Stat. Sol. A, 203, 2418 (2006). https://doi.org/10.1002/pssa.200521398
  24. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001). https://doi.org/10.1063/1.1361288
  25. Y. Gong, T. Andelman, G. F. Neumark, S. O'Brien, and I. L. Kuskovsky, Nanoscale Res. Lett. 2, 297 (2007). https://doi.org/10.1007/s11671-007-9064-6
  26. A. Toumiat, S. Achour, A. Harabi, N. Harabi, N. Tabet, M. Boumaour, and M. Maallemi, Nanotechnology 17, 658 (2006). https://doi.org/10.1088/0957-4484/17/3/007